INTEGRATED CIRCUITS

DATA BOOK

PNX1300 Series
Media Processors

Preliminary Specification 2002 Feb 15
Supersedes PNX1300 data of 2001 Oct 12
File under INTEGRATED CIRCUITS, TR1

= PHILIPS
Semiconductors &

Philips Semiconductors Preliminary Specification
|

Media Processors PNX1300 Series

2002 Feb 15

PHILIPS

Y

PNX 1300 Series Data Book

Foreword 13 System Boot
Table of Contents 14 Image Coprocessor
1 PinList 15 Variable Length Decoder
2 Overview 16 1°C Interface
3 DSPCPU Architecture 17 Synchronous Serial Interface
4 Custom Operations for Multimedia 18 JTAG Functional Specification
5 Cache Architecture 19 On-Chip Semaphore Assist Device
6 Videoln 20 Arbiter
7 Enhanced Video Out 21 Power Management
8 Audioln 22 PCI-XIO Bus Functional Specification
9 Audio Out A DSPCPU Operations
10 SPDIF Out B MMIO Register Summary
11 PCl Interface C Endian-ness
12 SDRAM Memory System Index

© 2001 Philips Electronics North America Corporation
All rights reserved.

See Terms and Conditions on the next page.

2002 Feb 15

Preliminary Specification

TERMS AND CONDITIONS

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes,
without notice, in the products, including circuits, standard cells, and/or software, described or contained
herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or
liability for the use of any of these products, conveys no license or title under any patent, copyright, or most
work right to these products, and makes no representations or warranties that these products are free from
patent, copyright, or most work right infringement, unless otherwise specified. Applications that are described
herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no
representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation products are not designed for use
in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips
Electronics North America Corporation product can reasonably be expected to result in a personal injury.
Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation products for use in such applications do
so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America
Corporation for any damages resulting from improper use or sale.

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the
Semiconductor Chips Protection Act.

DEFINITIONS
Data Sheet
Identification Product Status Definition

Objective Formative or in This data sheet contains the design target or goal specifications for product

Specification Design development. Specifications may change in any manner without notice.

Preliminary Preproduction This data sheet contains preliminary data, and supplementary data will be pub-

Specification Product lished at a later date. Philips Semiconductors reserves the right to make
changes at any time without notice in order to improve design and supply the
best possible product.

Product Full This data sheet contains Final Specifications. Philips Semiconductors reserves

Specification Production the right to make changes at any time without notice, in order to improve the
design and supply the best possible product.

© 2001, 2002 Philips Electronics North America Corporation
All rights reserved.
Printed in U.S.A.

Business Line Media Processing, 811 E. Arques Avenue, Sunnyvale, CA 94088

Foreword

The TriMedia™ PNX1300 Series is an enhanced version
of the TM-1300 family of media processor.

The PNX1300 Series contains an ultra-high performance
Very Long Instruction Word processor, as well as a com-
plete intelligent video and audio input/output subsystem.
The processor has an instruction set that is optimized for
processing audio, video and graphics. It includes power-
ful SIMD multimedia operators for eight- and 16-bit signal
datatypes as well as a full complement of 32-bit IEEE
compatible floating point operations.

The PNX1300 Series is intended as a multi-standard
programmable video, audio and graphics processor. It
can either be used standalone, or as an accelerator to a
general purpose processor.

The architecture of the TriMedia family came about as
the result of many years of effort of many dedicated indi-
viduals. Going back in history, the origin of TriMedia was
laid by the LIFE-1 VLIW processor, designed by Junien
Labrousse and myself in 1987. Work continued after-
wards in Philips Research Labs, Palo Alto. My special
thanks go to the entire Palo Alto research team: Mike
Ang, Uzi Bar-Gadda, Peter Donovan, Martin Freeman,
Eino Jacobs, Beomsup Kim, Bob Law, Yen Lee, Vijay
Mehra, Pieter van der Meulen, Ross Morley, Mariette
Parekh, Bill Sommer, Artur Sorkin and Pierre Uszynski.

The Palo Alto period matured the architecture—we port-
ed all video and audio algorithms that we could find to the
compiler/simulator and refined the operation set. In addi-
tion, we learned how to give the architecture a market di-
rection. In May 1994, Philips management—in particular
Cees-Jan Koomen, Eddy Odijk, Theo Claasen and Doug
Dunn—decided to develop TriMedia into a major Philips
Semiconductors product line.

Under the guidance of Keith Flagler, the TriMedia team
was built. All of them contributed to take this from a set
of interesting ideas to a reliable and competitive product
in a short period of time. The initial TriMedia team includ-
ed Fuad Abu Nofal, Karel Allen, Mike Ang, Robert Aqui-
no, Manju Asthana, Patrick de Bakker, Shiv Balakrish-
nan, Jai Bannur, Marc Berger, Sunil Bhandari, Rusty
Biesele, Ahmet Bindal, David Blakely, Hans Bouw-
meester, Steve Bowden, Robert Bradfield, Nancy
Breede, Shawn Brown, Sujay Chari, Catherine Chen,
Howen Chen, Yan-ming Chen, Yong Cho, Scott Clapper,
Matthew Clayson, Paul Coelho, Richard Dodds, Marc
Duranton, Darcia Eding, Aaron Emigh, Li Chi Feng, Keith
Flagler, Jean Gobert, Sergio Golombek, Mike Grimwood,
Yudi Halim, Hari Hampapuram, Carl Hartshorn, Judy
Heider, Laura Hrenko, Jim Hsu, Eino Jacobs, Marcel
Janssens, Patricia Jones, Hann-Hwan Ju, Jayne Keith,
Bhushan Kerur, Ayub Khan, Keith Knowles, Mike Kong,
Ashok Krishnamurti, Yen Lee, Patrick Leong, Bill Lin,
Laura Ling, Chialun Lu, Naeem Maan, Nahid Mansipur,

Mike Maynard, Vijay Mehra, Jun Mejia, Derek Meyer,
Prabir Mohanty, Saed Muhssin, Chris Nelson, Stephen
Ness, Keith Ngo, Francis Nguyen, Kathleen Nguyen,
Derek Noonburg, Ciaran O’Donnel, Sang-Ju Park,
Charles Peplinski, Gene Pinkston, Maryam Pirayou, Par-
dha Potana, Bill Price, Victor Ramamoorthy, Babu Rao
Kandamilla, Ehsan Rashid, Selliah Rathnam, Margaret
Redmond, Donna Richardson, Alan Rodgers, Tilakray
Roychoudhury, Hani Salloum, Chris Salzmann, Bob
Seltzer, Ravi Selvaraj, Jim Shimandle, Deepak Singh,
Bill Sommer, Juul van der Spek, Manoj Srivastava, Ren-
ga Sundararajan, Ken-Sue Tan, Ray Ton, Steve Tran,
Cynthia Tripp, Ching-Yih Tseng, Allan Tzeng, Barbara
Vendelin, John Vivit, Rudy Wang, Rogier Wester, Wayne
Wonchoba, Anthony Wong, Sara Wu, David Wyland,
Ken Xie, Vincent Xie, Bettina Yeung, Robert Yin, Charles
Young, Grace Yun, Elena Zelayeta and Vivian Zhu.

Expert help and feedback was received from many. In
particular, I'd like to mention Kees van Zon of Philips
Eindhoven for the help with filtering-related issues, and
Craig Clapp of PictureTel for excellent feedback on all
aspects of the architecture.

My special thanks go to Joe Kostelec. He made me un-
derstand that my ambitions could better be realized in
California than in Europe. Furthermore, his vision and his
wisdom are credited with keeping this project alive and
growing until the ‘investment decision.’

The vision of a universal media accelerator is credited to
Jaap de Hoog. Jaap, | wish you were here to see it come
to fruition.

—Gerrit Slavenburg

After the initial TM-1000 product, the TM-1100, TM-1300
and now PNX1300 Series chips have been successfully
integrated in many video and audio products. Ithas been
my pleasure to have been involved in these designs and
would like to thank the people involved in TM-1300 and
PNX1300 Series projects under the guidande of Cees
Hartgring and Simon Wegerif. The team included Karel
Allen, Tien-Cheng Bau, Jim Campbell, Anitamk Chan,
John Chang, Roel Coppoolse, Taufik Dakhil, Mitch Dani-
il, Nam Dao, Patrick Debaumarche, Thuy Duong, Tor-
sten Fink, Jan Grotenbreg, Mohammad Hafeez, Feng
Hao, Farah Jubran, Babu Rao Kandamalla, Aki Kaniel,
Yan-Ling Li, Ying-Chao Liu, Naeem Maan, Don Marshal,
Thomas Meyer, Javed Mukarram, Long Nguyen, Tu
Nghiem, Elaine Outler, Charles Peplinski, Duc T. Pham,
Thorwald Rabeler, Raquel Ruiz, Ensieh Saffari, Hani
Salloum, Wenyi Song, Stephen Tomasello, Tran Tung,
Maria F. Wangsahamidjaja, Chang-Ming Yang, Moham-
med |. Yousuf, Hui Zhang and Gerrit Slavenburg.

- Luis Lucas

PRELIMINARY INFORMATION 1

PNX1300/01/02/11 Data Book Philips Semiconductors

2 PRELIMINARY INFORMATION

Table of Contents

Foreword

1 PinList

1.1 PNX1300 Series versus TM-1300 oottt e e e e e e e
1.2 Boundary SCan NOLICEot e e e
L3 1/O CIrCUIt SUMIMAIY . . oot e e et e e e e e e e e e e e et e e e e e e e e e s
1.4 Signal Pin List . ..o
1.5 Power Pin List ... e
1.6 Pin Reference VOItAge oot e e e e e e
L7 PaCKage . . o o
1.8 Ordering Information
1.9 Parametric CharaCteriStiCsottt e e e e e
1.9.1 PNX1300/01/02/11 Absolute Maximum Ratingsottt i e
1.9.2 PNX1300/01/02 Operating Range and Thermal Characteristics
1.9.3 PNX1311 Operating Range and Thermal Characteristics
1.9.4 PNX1300/01/02/11 Power Supply SEQUENCING oottt i e e e e
1.9.5 PNX1300/01/02 DC/AC CharacteristiCSttt e e
1.9.6 PNX1311 DC/AC CharacCteristiCSvu ittt e e e e e e e
1.9.7 PNX1300 Series Power ConSUMPLiONottt e e e e e
1.9.7.1 Power Consumption for Applications on PNX1300 Series

1.9.7.2 PNX1300/01/02 DSPCPU Core Current and Power Consumption

1.9.7.3 PNX1311 DSPCPU Core Current and Power Consumption Details

1.9.7.4 PNX1300/01/02 Current Consumption For On-Chip Peripherals

1.9.7.5 PNX1311 Current Consumption For On-Chip Peripherals

1.9.7.6 STRG3, STRG5 type /O CIrCUIto e e e e

1.9.7.7 NORM3 type /O CirCUItot e e e

1.9.7.8 WEAKS type /O CIFCUItot e e e e e
1.9.7.91ICOD (12c) type /O CIFCUIt oot e e e e e e

1.9.7.10 SDRAM interface timing for PNX1300/01/02/11 speed grades.

19711 PCIBUS IMING . . .o ottt ettt e e et e e e

19722 JTAG O tIMING . .. ottt e e e

19723 12C HO tIMING . .o oot e et e e e e e e

1.9.7.14 Video IN /O TiMING . . oo ottt e e e e e

1.9.7.15 Video Out /O TIMING . .. oottt e e e e e e e

1.9.7.16 Audioln /O tIMINGo ot e

1.9.7.17 Audio OUt /O tIMING . . .« oottt e e e

1.9.7.28 SSIHOtIMING . .o oot e

PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book Philips Semiconductors

2 Overview

2.1 INtrodUCHION . .o o e e e 2-1
2.2 PNX1300 Fundamentalsttt e e e 2-1
2.3 PNX1300 Chip OVEIVIEW . . .ottt it e et e et e e e e e e e e e e e e e e e 2-1
2.4 Brief Examples of Operationt e 2-3
2.4.1 Video Decompression ina PC 2-3
2.4.2Vide0 COMPIESSION . . . ottt et e et e e e et e e e e e 2-3
2.5 Introduction to PNX1300 BIOCKSot 2-3
2.5.1 Internal ‘Data Highway' BUS e 2-3
2.5 2 VLIW Processor COMeottt it et e et et e e 2-4
253 Video INUNIt ... 2-4
2.5.4 Enhanced Video Out Unit 2-4
2.5.51Mage COPIOCESSOLttt i it e e e et e e e e e e 2-4
2.5.6 Variable-Length Decoder (VLD)ot e 2-5
257 Audio Inand Audio OUt UNitso e 2-6
2.58 SIPDIF OUt UNit ... e e 2-6
2.5.9 Synchronous Serial Interface e 2-6
2510 12C INterfaCe . .. oottt e 2-6
2.6 New In PNX1300 (Versus TM-1300)ottt ettt e e e e e e e e e e 2-6
2.7 New In PNX1300 (Versus TM-1100)ttt ettt e e et e e e e e e e e 2-6
2.8 New In PNX1300 (Versus TM-1000)ottt ettt e e et e e e e e e e e 2-6

3 DSPCPU Architecture

3.1 Basic Architecture CONCEPLS ittt i e e e e e e 3-1
3. L1 Register Model 3-1
3.1.2 Basic DSPCPU Execution Model i 3-2
B. L3 PCSW OVEIVIEW . . v i ittt e et e et e e e e e e e e e e e e e e e 3-2
3.1.4 SPC and DPC—Source and Destination Program Counteroou.n... 3-3
3.1.5 CCCOUNT—CIlock Cycle COUNterttt e e e 3-3
3.1.6 Boolean Representationttt e 3-3
3.1.7 Integer Representation ittt e 3-4
3.1.8 Floating Point Representationttt 3-4
3. 1.9 Addressing MOdeSttt 3-4
3.1.10 Software Compatibility 3-4

3.2 INStruction SEt OVEIVIEWot it e et e 3-5
3.2.1 Guarding (Conditional EXeCUtion) i 3-5
3.2.2 Load and Store Operationsttt ittt e e 3-5
3.2.3Compute OPEratioNS vttt i it et e e e e 3-6
3.2.4 Special-Register Operationsttt e e e 3-6
3.2.5 Control-FIow Operationsot e e 3-6

4 PRELIMINARY SPECIFICATION

Philips Semiconductors

3.3 PNX1300 Instruction Issue RUIES e 3-6
3.4 Memory and MMIO 3-7
B4 L MEMONY MaApP . . ottt e e e e e e 3-7
3.42The Memory Hole 3-7
343 MMIO MemMOry Map .. .ot e 3-7
3.5 Special EventHandling 3-8
B 5 L RESET o 3-9
3.5.2 EXC (EXCEPLIONS) . .ot it e et it e e et e e e e e e e 3-9
3.5.3 INT and NMI (Maskable and Non-Maskable Interrupts) v in... 3-9
3.5.3. 1 INterrupt VECIOIS oo e 3-9

3.5.3.21INterrupt MOTES e 3-10

3.5.3.3 Device interrupt acknowledge 3-10

3.5.3.4 Interrupt Priofitieso 3-10

3.5.3.5 Interrupt Masking 3-10

3.5.3.6 Software interrupts and acknowledgment i 3-11

3.5.3.7 NMI sequentialization e e 3-11

3.5.3.8 Interrupt SOUrCe asSigNMEeNtottt e e e 3-11

3.6 PNX1300 to HOSt INterrupts o e e e e 3-11

3.7 Host to PNX1300 INterruptso e e e e 3-12

B B TIMEIS . . 3-12

3.9 DEbUg SUPPOIt . . o 3-13

3.9.1 Instruction Breakpointsottt 3-13

3.9.2 Data Breakpointso 3-14

4 Custom Operations for Multimedia

4.1 Custom OperationS OVEIVIEWottt ettt e et e et e e e e 4-1
4.1.1 Custom Operation MOtiVatIoNt e 4-1
4.1.2 Introduction to Custom OpPerationsc ittt e e 4-1
4.1.3 Example Uses of CUSIOM OPSottt e 4-3

4.2 Example 1: Byte-Matrix Transpositiont 4-3

4.3 Example 2: MPEG Image RECONSIIUCIONttt e e e 4-4

4.4 Example 3: Motion-Estimation Kernel 4-7
4.4.1 A Simple Transformationt 4-8
4.42More Unrollingo oo 4-10

5 Cache Architecture

5.1 Memory SyStem OVEIVIEWottt et et e e e e e e et e e e e 5-1
5.2 DRAM APEIUIE . o et e e e e e e e e 5-2
5.3 Data Cache 5-3
5.3.1 General Cache Parametersttt 5-3
5.3.2 Address Mapping oottt it e 5-3

PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book Philips Semiconductors

5.3.3 Miss Processing Orderttt e e e 5-4
5.3.4 Replacement Policies, CONErenCyttt e i 5-4
5.3.5 Alignment, Partial-Word Transfers, Endian-ness oo, 5-4
5.3.8 DUal POMtS . .o 5-4
5.3.7 Cache LOCKING i 5-4
5.3.8 Memory Hole and PCl Aperture Disable i 5-5
5.3.9 Non-cacheable RegiON i e e 5-5
5.3.10 Special Data Cache Operationsttt e e e 5-6
5.3.10.1 Copyback and invalidate operations it 5-6
5.3.10.2 Data cache tag and status operationsttt 5-6
5.3.10.3 Data cache allocation operationttt 5-7
5.3.10.4 Data cache prefetch operation i 5-7
5.3.11 Memory Operation Orderingottt e e 5-7
5.3.12 0Operation LatenCyttt ot 5-8
5.3.13 MMIO Register References i 5-8
5.3.14 PCIBUS REfErenCesS oo e e e 5-8
5.3.15 CPU Stall ConditionsSo ottt e e 5-8
5.3.16 Data Cache Initialization 5-8
5.4 1Instruction Cache 5-8
5.4.1 General Cache Parametersttt e 5-8
5.4.2 Address Mappingottt e e e 5-8
5.4.3 Miss Processing Orderttt e e e e 5-9
5.4.4 Replacement POLICY it 5-9
5.4.5 Location of Program Codet 5-9
5.4.6 BranCh UNits o 5-9
5.4.7 Coherency: Special iclr Operation 5-9
5.4.8 Reading Tags and Cache Statusc .ttt i 5-9
5.4.9 Cache LOCKING ot 5-10
5.4.10 Instruction Cache Initialization and Boot Sequencec.iiiiinnen... 5-10
5.5 LRU AlgOrithm . .. o 5-11
5.5.1 Two-Way Algorithmo e 5-11
5.6 Cache CONEIeNCYttt e e e e 5-11
5.6.1 Example 1: Data-Cache/lnput-Unit Coherencyo ittt 5-11
5.6.2 Example 2: Data-Cache/Output-Unit Coherency i, 5-11
5.6.3 Example 3: Instruction-Cache/Data-Cache Coherency 5-11
5.6.4 Example 4: Instruction-Cache/Input-Unit Coherencyo, 5-11
5.6.5 Four-Way Algorithm 5-11
5.6.6 LRU Initializationo 5-12
5.6.7 LRU Bit Definitionst e 5-12
5.6.8 LRU for the Dual-Ported Cache i 5-12

6 PRELIMINARY SPECIFICATION

Philips Semiconductors

5.7 Performance Evaluation SUPPOIto e 5-12
5.8 MMIO RegISter SUMMAIYt vt it ettt e e e e e e e e e e e e e e 5-13
6 Video In
6.1 VIdEO INOVEIVIEW . . o .ottt et et e et e e e e e e e e e e 6-1
B.1. 0 INterfaceo 6-1
6.1.2 DIagnostic MOOeo 6-2
6.1.3 Power Down and Sleepless 6-2
6.1.4 Hardware and Software Reset i 6-2
6.2 CIOCK GENEIALON\ ot ottt et e e e e e e 6-4
6.3 Fullres Capture MOet e 6-4
6.4 Halfres Capture Mode e e e e 6-9
6.5 RawW Capture MOGESottt it e e e 6-10
6.6 Message-Passing MOde 6-11
6.6.1 VI_DVALID in Message Passing Mode it 6-12
6.7 Highway Latency and HBE e e e 6-13

7 Enhanced Video Out

7.1 Enhanced Video QUL SUMMANYottt e e e e e e e e e 7-1
7.2 About ThiS DOCUMENT . . . o .ot e e e e e e e e e e e e e 7-1
7.3 Backward Compatibility 7-1
7.4 FUNCHON SUMMATY . ..ottt e e e et e 7-1
7.4.1 Detailed Feature DeSCrPLIONSottt e e e 7-2
7.4.2 Summary of OPerationttt it e 7-2
T D INtEIfACE . . . o 7-2
7.6 BIOCK DIagramttt e e e 7-3
7.7 ClOCK SYStem . . oo 7-3
7.81Mage TIMINGttt e e e e e e 7-4
7.8. 1 CCIR 656 Pixel TIMINGot e e e e e e 7-4
7.82CCIR 656 LiNe TiMINGo ottt e e e e e e e e 7-4
7.83SAV and EAV CoOES 7-5
7.8.4ViIdeo CliPPINgottt e 7-6
7.85 CCIR 656 Frame TimiNg oottt e e e e e e 7-6
7.9 Enhanced Video Out Timing Generationttt e e e 7-6
T.9.LACtiVe VIdEO Area . ..o ot 7-6
7.9.2 SAV and EAV Overlap Period 7-7
7.9.3 Control of Frame and Image COUNtErSttt i e i e e 7-7
7.9.4 Horizontal and Frame Timing Signals e e 7-7
7.10 Genlock MOde o 7-8
7.11 Data Transfer TIMING oo e e e e e e e 7-9
7.12 Image Data Memory FOrmats 7-9

PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book Philips Semiconductors

7.12.1Video Image FOrMALSt ittt e e e e e e 7-9
7.12.2 Planar Storage of Video Image Data in Memoryt 7-10
7.12.3 Graphics Overlay Image Format 7-10
7.13 Video Image Conversion Algorithms 7-10
7.13.1 YUV 4:2:2 Interspersed to YUV 4:2:2 Co-sited Conversionc.ooou... 7-11
7.13.2 YUV 4:2:0 to YUV 4:2:2 Co-sited CONVEISIONottt e et e e e e 7-11
7133 YUV-2X UPSCAING .« oo et et e et e e e e e e e 7-11
7.13.4 Pixel Mirroring for Four-tap Filters 7-11
7.14 EVO Operating MOOESot e et e e e e e e e e e 7-13
7.5 VIdEO PrOCESSING .« . v ottt et e et e et e e et e e e e 7-13
7.15.1 Alpha BIendingt 7-13
7.15.2 Chroma KeYING . . .ottt e e e e e e e 7-14
7.15.3 Programmable CHpPIiNgo oot e e e 7-14
7.16 MMIO REQISIEIS . . oot ittt e e et e e e e 7-14
7.16.1 VO Status Register (VO_STATUS)ttt oo e e 7-16
7.16.2 VO Control Register (VO_CTL) . .. ot vttt et e e e e e e e 7-17
7.16.3 VO-Related RegIStErS i e 7-18
7.16.4 EVO Control Register (EVO_CTL) .. .ottt e e e e e s 7-20
7.16.5 EVO-Related RegiStersot 7-21
7.17 Enhanced Video Out OPErationttt e e e 7-21
7.17.1 Video Refresh Modeso 7-21
7.18 Frame and field timing control 7-23
7.18.1 Recommended values for timing registers 7-23
7.18.2 Data-transfer MOAESo e 7-23
7.18.3 Interrupts and Error Conditionsttt e 7-23
7.18.4 Latency and Bandwidth Requirements i 7-24
7.18.5 Power Down and SIeepless 7-24
7.19 DDS and PLL Filter Details e e 7-25
8 Audio In
8.1 AUIO IN OVEIVIEW . . .ottt e e e e e e e e e 8-1
8.2 External INterface 8-1
8.3 ClOCK SysStem .. o 8-2
8.3.1 PNX1300 Improved MOEeottt e 8-2
8.3.2 TM-1000 Compatibility Mode e 8-2
8.4 Clock System Operationttt e e 8-2
8.5 Serial Data Framingt 8-3
8.6 Memory Data FOrmMats e e e e 8-4
8.7 AUIO IN OPErationottt e e e 8-6
8.8 Power Down and SIEEpIesSo 8-7
8.9 Highway Latency and HBEt e e e 8-7

8 PRELIMINARY SPECIFICATION

Philips Semiconductors

10

8.10 Error BENAVIOT . . . oo e 8-7
8.11 DiagnostiCc MOOEo e e 8-7
Audio Out
9.1 AUIO OUE OVEIVIEW . . o . ottt e e e e et et et et e e e e e e e e e e e e e e 9-1
9.2 External INterface e 9-1
9.3 Summary of OPeration 9-2
9.4 Internal CIOCK SOUICEot e e e e e e e e e e e 9-2
9.4.1 PNX1300 Standard Improved Modet 9-3
9.4.2 TM-1000 Compatibility Mode 9-4
9.5 Clock System Operationttt e e e e 9-4
9.6 Serial Data Framingottt 9-4
9.6.1 Serial Frame Limitations e 9-5
9.6.2 12S Serial Framing Example 9-6
9.7.C0dec CoNtrol i 9-6
9.8 Memory Data FOrMALS o 9-7
9.9 Audio QUL OPEIAtION . . .ottt e e e e e e e e e 9-8
Q.10 INTEITUPES . . oot e e e e e e s 9-9
QAL TIMESIAMP . o o ot ottt et e e e e e e 9-10
9.12 powerdown and SIEEPIESS oot 9-10
9.13 Highway Latency and HBE e e e 9-10
Q.14 Error BENAVIOT . . . oo 9-11
SPDIF Out
10.1 SPDIF QUL OVEIVIEW . . .ottt e 10-1
10.2 External Interfaceo 10-1
10.3 Summary Of OPErationottt et e 10-1
10.3. 1 SPDIF MOGE . . .ottt e e e e e e e e e 10-1
10.3.2 Transparent DMA MOo e e 10-1
10.4 IEC-958 Serial FOrmat ot 10-2
10.51EC-958 Bit Cell and Pre-amble 10-2
10.6 IEC-958 Parityottt e e e e s 10-3
10.7 IEC-958 Memory Data Format e 10-3
10.8 Sample Rate Programmingttt 10-3
10.9 Transparent MOOEttt e e e e e e e e e 10-4
10.20 DMA OPEIatiOnttt e e e et e et e e e e e e e 10-4
10.11 DMA Error ConditionSo ottt e e e e e 10-4
L1012 INTEITUPES . .ttt et e e et e e e e e e e e e 10-4
10.13 TIMESIAIMPS . . oottt e et e et e e e e e e e e e e e e 10-4
10.14 MMIO Register DeSCriptiOn oo e e e e 10-5
10,05 RESET .« oo e 10-6

PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book Philips Semiconductors

10.16 Power Down and SIEEPIESSo oot it 10-6
10.17 HBE and Highway LatenCyt e e e 10-6
10.18 Literature RefEreNCeSot 10-7

11 PCI Interface

LI PCIOVEIVIEW . .o ottt et e 11-1
11.2 PCl Interface as an INitiator 11-2
11.2.1 DSPCPU Single-Word Loads/Storeso ittt 11-2
11.2.2 /O OPEIAtiONS . . . oottt e e e et e e e e e 11-2
11.2.3 Configuration Operationsttt e e e 11-2
11.2.4 DMA OPEIatiONS . . oottt et it e e e e e e e e 11-2
11.3 PClInterface as a Targetottt e e e e e 11-3
11.4 Transaction Concurrency, Priorities, and Orderingttt 11-3
11.5 Registers Addressed in PCI Configuration Spacei ittt 11-3
11.5.1 Vendor ID ReQISTErottt e e 11-3
11.5.2 Device ID ReQISIOrot e 11-3
11.5.3 Command RegIStero o 11-3
11.5.4 Status ReQISIErot 11-5
11.5.5 Revision ID RegiStert e 11-6
11.5.6 Class Code RegiSterottt e e e 11-6
11.5.7 Cache Line Size RegiStert e e e 11-7
11.5.8 Latency Timer ReQIStero ot e e e e e e 11-7
11.5.9 Header Type RegIStero o e e e 11-7
11.5.10 Built-In Self Test Register 11-7
11.5.11 Base Address RegISIErSot e 11-7
11.5.12 Subsystem ID, Subsystem Vendor ID Register i, 11-9
11.5.13 Expansion ROM Base Address Register 11-9
11.5.14 Interrupt Line RegISter oo o 11-9
11.5.15 Interrupt Pin RegiSter 11-9
11.5.16 Max_Lat, Min_Gnt RegiSters 11-9
11.6 Registers in MMIO SPaCEottt it e e e e e e e 11-9
11.6.1 DRAM_BASE ReQISIOr it e e 11-9
11.6.2 MMIO_BASE REQISIErt i it e e e 11-9
11.6.3 MMIO/DRAM_BASE UPateSttt it e e e 11-10
11.6.4 BIU_STATUS ReQISIOr . .. ittt e e e e e e s 11-11
11.6.5BIU_CTL REGISIEr . . .t ottt e e e e 11-11
11.6.6 PCIL_ADR REQISIEr . ..ottt e e 11-12
10.6.7 PCIL_ AT A REGIS I .ttt e e e e e 11-12
11.6.8 CONFIG_ADR REQISIOr . . i ittt et et e e e e e e 11-12
11.6.9 CONFIG_DATA REQISIEI . .t ittt et e et e e e e e e 11-13
11.6.10 CONFIG_CTL REQISIEr . . .ottt it et e e e e e e e e e e s 11-13

10 PRELIMINARY SPECIFICATION

Philips Semiconductors

11.6.11 IO_ADR REQISIEr . . i it i e e 11-13
11.6.12 I0_DATA REGISIEr . .o it e e e 11-13
11.6.13 10_CTL ReQISIEN . . o ot o it et e e e e e et e e e e 11-13
11.6.14 SRC_ADR ReQISIEr . . oottt e e 11-14
11.6.15 DEST_ADR REeQISIOr . .. ottt e e e 11-14
11.6.16 DMA_CTL REGISIEI . . . oo i it ettt e e e e e e e e e e 11-14
120.6.07 INT_CTL REGISIEr . . .ottt e e e e e e 11-15
11.7 PCI BUS ProtoCol OVEIVIEWot ittt et e e e e e e e e e 11-15
11.7.1 Single-Data-Phase Operationsttt e e 11-16
11.7.2 Multi-Data-Phase Operationsttt e 11-16
118 LIMItAtIONS . ..ot e e 11-17
11.8.1 BUS LOCKING ..ottt ot e e e e e e e e 11-17
11.8.2 NO EXpansion ROM e e e 11-17
11.8.3 No Cacheline Wrap Address SEQUENCE v vttt e e e e 11-17
11.8.4 No Burst for I/O or Configuration Space it 11-17
11.8.5 Word-Only MMIO ReQIStEr ACCESS . . . o vttt it e e e e et e e i e e 11-17

12 SDRAM Memory System

12.1 New in PNXL1300/01/02/11 . . .o oo e e et e e e e e e e e e e 12-1
12.2 PNX1300 Main Memory OVEIVIEWo v ottt ettt et et e et e e e e e e e e 12-1
12.3 Main-Memory Address APErtUrettt e e e e e 12-1
12.4 Memory Devices SUPPOIEAottt e e e e 12-2
12.4.0 SDRAM . o 12-2
12.4.2 SGRAM . 12-2
12.5 Memory Granularity and Sizes e 12-2
12.6 Memory System Programmingo ottt et e e e e 12-3
12.6.1 MM_CONFIG REQISIEI . .. ottt e e e e e e 12-3
12.6.2 PLL_RATIOS REQISIEI . . . ot ettt e e e e e e e 12-4
12.7 Memory Interface Pin LISt 12-5
12.8 AdAress Mappingottt i e e e e e e e e 12-5
12.8.1 Address Mapping in 32-bit mode 12-5
12.8.2 Address Mapping in 16-bit mode 12-6
12.9 Memory Interface and SDRAM Initialization e 12-6
12.10 On-Chip SDRAM INterleavingottt e e e e e e e e 12-6
12,00 Refresh . .o o 12-6
12.12 POWer-DOWNn MOGTEot e e 12-7
12.13 Output Driver Capacityo oot e et e e e e e e e 12-7
12.14 Signal Propagation Delay COMPensationottt i 12-7
12.15 Circuit Board Designot e 12-7
12.15.1 General GUIEliNES i 12-7
12.15.2 Specific GUIdEliNeS 12-8

PRELIMINARY SPECIFICATION 11

PNX1300/01/02/11 Data Book Philips Semiconductors

12,153 Terminationt e 12-8
12.16 TiMiNg Budgeto 12-8
12.16.1 Main AC Parameter reqUIremMeNntSottt ittt et e 12-9
12.17 Example BIOCK Diagrams oo ottt e e e e 12-9
12.17.1 Block Diagrams for a 32-bitinterface i 12-9
12.17.1.1 16-Mbit DeViCes Or LESSottt e 12-9

12.17.1.2 64-MDIt DEVICES oot ot ettt e e e e e e 12-10

12.17.1.3 128-Mbit DEVICES . . . o o ot ot ettt e e e e 12-13

12.17.1.4 256-MDit DEVICES . . . oo oot it et e e e e 12-16

12.17.2 Block Diagrams for a 16-bitinterface i 12-17

13 System Boot

13.1 BOOt SEQUENCE OVEIVIEW . . . ot ot et et e e et et e e et et e e e e e e e et 13-1
13.2 Boot Hardware Operationttt i e e et e e e e e e s 13-2
13.2.1 Boot Procedure Common to Both Autonomous and Host-Assisted Bootstrap 13-2

13.2.2 Initial DSPCPU Program Load for Autonomous Bootstrap135

13.3 Host-Assisted BoOt DESCIIPLIONot e e e e 13-6
13.3.1 Stage 1: PNX1300 System Boot Hardwaret . 13-6
13.3.2 Stage 2: Host-System PCI Configuration it 13-6
13.3.3 Stage 3: PNX1300 Driver ExecutingontheHost 13-6

13.4 Detailed EEPROM CONENES oo oot ittt e et e et e e e e s 13-7

13.5 EEPROM ACCESS ProtOCOIS oottt e e e e e e 13-9

14 Image Coprocessor

14.1 Image COoproceSSOr OVEIVIEWttt it it et e e e e e e e e e e e e e e e e 14-1
14.2 REQUITEMENES . . . oottt ettt et e et e e e e e e e e e e e 14-1
T4.2. 1 FUNCHONS .« . ottt ettt e e et e e e e e e e e e 14-1
14.2.2 Bandwidth e 14-1
14.2.3Image Size and Scaling o 14-3

143 INtErfaCE . .o ot 14-3
14.4Data FOrMatS e e 14-3
14.4.1 Image INput FOrMALSot e e e 14-3
14.4.0.1 YUV 4:2:2 CO-SiItedottt e e 14-3

14.4.1.2 YUV 4:2:2 INterspersedottt e e 14-3

14.4.1.3 YUV 4:2:0 XY INterspersedttt i e e 14-3
14.4.0.4YUV 4111 CO-Sited . . oottt e e e 14-3

14.4.2 Image Overlay FOrMALSot e e e e e e 14-5
14.4.3 Alpha Blending Codes ot 14-5
14.4.4 OUtPUL FOIMALSot e e et e e e e e e 14-5

14,5 AlgOrtNMS . o 14-6
1451 IntrodUCtiON . . . oo ot e e e 14-6

12 PRELIMINARY SPECIFICATION

Philips Semiconductors

TA5.2 FIEING . . oottt e e e e e e 14-6
14.5.3 SCaliNg ...t i e 14-6
1454 YUVIORGB CONVEISIONottt e e e e e e e 14-9
14.5.5 Overlay and Alpha Blending 14-9
1456 DItNEIING . . oot 14-10
14.5.7 Implementation Overview: Horizontal Scaling and Filtering 14-11
14.5.7.1 Loading the extra pixels inthefilter 14-12
14.5.7.2 Mirroring pixels atthe ends ofaline 14-12
14.5.7.3 Horizontal filter SDRAM tiMINg ot e e 14-12
14.5.8 Implementation Overview: Vertical Scaling and Filtering 14-13
14.5.8.1 Mirroring lines at theends of animage, 14-15
14.5.8.2 Vertical filter SDRAM block timing 14-15
14.5.9 Horizontal Scaling and Filtering for RGB Outputttt 14-15
14.5.9.1 YUV sequence counter in YUV 4:2:2 outputMode 14-15
14.5.9.2 PCloutputblock timing 14-16
14.6 Operation and Programmingttt e e e e 14-16
14.6.1 ICP Register Model 14-17
14.6.2 POWEr DOWN . .. e e 14-17
14.6.31CP OPErationt it e e et e e e e e e e 14-18
14.6.4 ICP MIiCroprogram Stottt it e e e 14-18
14.6.5ICP Processing TIMe ittt e e e e 14-18
14.6.6 Priority Delay and ICP Minimum Bus Bandwidth 14-21
14.6.7 ICP Parameter Tables 14-22
14.6.8 Load CoeffiCiENtS o 14-22
14.6.9 Horizontal Filter - SDRAM t0 SDRAMot e s 14-22
14.6.9.1 AlgOrithmso e 14-22
14.6.9.2 Parametertable 14-22
14.6.9.3 Control word format 14-23
14.6.10 Vertical Filter - SDRAM 10 SDRAMt e e 14-24
14.6.10.1 AlGOMthmMS .. .o e 14-24
14.6.10.2 Parametertable 14-24
14.6.10.3 Control word formatt 14-25
14.6.11 Horizontal Filter with RGB/YUV Conversion to PCl or SDRAM 14-25
14.6.11.1 AlGOMtmMS .. .o 14-25
14.6.11.2 Parametertable 14-26
14.6.11.3 Control word format e 14-27

15 Variable Length Decoder

15.1 VLD OVEIVIEW . v ittt et e e e e e e e e e e e e e e e e e e e 15-1
15.2 VLD OPErationottt e et e e e e e e e e e e e 15-1
15.3 Decoding Up t0 A SliCe . . . oot 15-2

PRELIMINARY SPECIFICATION 13

PNX1300/01/02/11 Data Book Philips Semiconductors

15,4 VLD INPUL . . oo e e e 15-2
I5.5 VLD OUIPUL .o e e e e e e e e e e e 15-3
15.5.1 Macroblock Header Output Dataot e 15-3
15.5.2 Run-Level Output Dataot 15-4
15.6 VLD Time Sharingottt e e e e 15-4
15.7 MMIO REQISIEIS . . .ottt et e e e e 15-4
15. 7.1 VLD Status (VLD _STATUS) . ..ot e e e e e e e s 15-4
15.7.2 VLD Interrupt Enable (VLD_IMASK)ot 15-4
15.7.3 VLD COMrol (VLD_CTL) .. .ottt et e e e e e e e e e 15-5
15.8 VLD DMA REQISIEIS . . . oottt et e et e e e e e e e e e 15-5
15.8. 1 DMA INPUL . o e 15-5
15.8.2 Macroblock Header Output DMA e 15-5
15.8.3 Run-Level Output DMA o 15-5
15.9 VLD Operational RegiSterst e e e 15-7
15.9.1 VLD Command (VLD_COMMAND)t i e e e e s 15-7
15.9.2 VLD Shift Register (VLD_SR)ottt e e e e 15-7
15.9.3 VLD Quantizer Scale (VLD_QS) oottt 15-7
15.9.4 VLD Picture Info (VLD_PI)t e e e 15-8
15.20 Error Handlingo oot 15-8
15,1 INtEITUPL . . o e e e e e s 15-8
15,02 RESET . .ot 15-8
1513 ENI@N-NESS . . . oottt 15-8
15. 14 POWEIr DOWN . .o e e e e e e e e e 15-8
15,05 REEIENCES . . .o o 15-8

16 12C Interface

16. 1 12C OVEIVIEW . . . ottt ettt e et e e e e e e e e e e e e e e 16-1
16.2 Compared TO TM-1000ttt it e e e e e e e e e e e 16-1
16.3 External Interfaceo 16-1
16.4 12C RegIStEr St . ..ottt 16-1
16.4.1 HHC_AR REQISIEr . . ottt e e e e e e e e e 16-1
16.4.2 IC_DR REGISIEI . . ottt it e e e e e e e e 16-2
16.4.3 1IC_SR REQISIEr . .ottt it e e e 16-3
16.4.4 lIC_CR REGISIEI . . ottt it e e e e e e e e e 16-4
16.5 12C Software Operation MOdettt e e 16-5
16.6 12C Hardware Operation MOGEttt e e e e e 16-5
16.6.1 Slave NAK . . .o 16-6
16.7 12C Clock Rate Generationttt e e e e e 16-7

17 Synchronous Serial Interface

17.1 Synchronous Serial Interface OVervIeWt 17-1

14 PRELIMINARY SPECIFICATION

Philips Semiconductors

172 INtErfaCE . . o oo 17-1
17.3 BIOCK Diagramttt e e e e e e s 17-1
17.3.1 General Purpose 11O 17-2
17.3.2 Frame Synchronizationttt it e 17-3
17.3. 3 SSITranSMItot e e e e e 17-3
17.3.4 SSI RECEIVE . ..ot 17-3
17.4 SSI Transmit OPEratioNottt e e e e e e e e e e 17-5
17.4.1 Setup SSI_CTL .o 17-5
17.4.2 Operation Details 17-5
17.4.3 Interrupt and STAtUS oot e 17-5
17.5 SSI ReCeiVe OPEration oo ot it ettt e e e e e e 17-6
17.5.0 Setup SSI_CTL .o o 17-6
17.5.2 Operation Detailst 17-6
17.5.3 Interrupt and StAtUS oot e e 17-6
17.6 Frame TiMING . . . oottt e e e e e e e e 17-6
17.7 Interrupt GENETALION ot e e e e e e 17-7
17.8 16-bit Endian-ness and Shift Direction 17-7
17.9 SSI TSt MOUES . . .ottt e e e e e e 17-8
17.9.1 Remote Loopback 17-8
17.9.2 Local LoOPphacKo 17-8
17.10 MMIO REQISIEIS . . o ettt et e e e e e e e e e e e e e e e e e e 17-8
17.10.1 SSI Control Register (SSI_CTL) .. .ottt e e e e e 17-9
17.10.2 SSI Control/Status Register (SSI_CSR) o e 17-11
17.11 Timing Diagramsottt e e et e e e e e e e e e e 17-12
1712 POWEIr DOWN .« ..o e e e e e e e 17-12
18 JTAG Functional Specification
I8 L OVEIVIEW .. ottt et ettt e et e e et et e e e e e 18-1
18.2 Test ACCESS POt (TAP) ..o e e e e e 18-1
18.2.1 TAP CONtroller o e e e e 18-1
18.2.2 PNX1300 JTAG INStruCtion St it i i e e i e e 18-2
18.3 Using JTAG for PNX1300 DEDUQ o oottt it e e e e e e e e 18-3
18.3.1 JTAG Instruction and Data Registers. it 18-4
18.3.2 JTAG Communication Protocolt e e 18-5
18.3.3 Example Data Transfer VIia JTAGot e e e 18-5
18.3.3.1 Transferring datato TriMedia via JTAGottt e 18-5
18.3.3.2 Transferring data from TriMediavia JTAGt 18-6
18.3.4 JTAG Interface Module 18-6
19 On-Chip Semaphore Assist Device
19.1 OVERVIEW . ..ottt e e 19-1
PRELIMINARY SPECIFICATION 15

PNX1300/01/02/11 Data Book Philips Semiconductors

19.2 SEM Device Specification 19-1
19.3 Constructing @ 12-Bit IDo o it e e e 19-1
19.4 Which SEM 10 USE . . . oottt e e e e e e e e 19-1
19,5 Usage NOtES 19-1

20 Arbiter

20.1 Arbiter FEAUIES oo it 20-1
20.2 Dual Priorities with Priority Raising Mechanism i 20-1
20.3 Round Robin Arbitration 20-2
20.3.1 Weighted Round Robin Arbitration 20-2
20.3.2 Arbitration Levels 20-3
20.4 Arbiter ArChiteCtUreo e 20-4
20.5 Arbiter programmingot e e 20-5
20.5.1 Latency ANAlySISottt e e 20-5
20.5.2 Bandwidth Analysisot 20-6
20.6 Extended Behavior Analysist 20-7
20.6.1 Extended Bandwidth Analysis 20-7
20.6.2 Extended Latency ANalysSisttt e 20-7
20.6.3 RaISING Priorityt e 20-8
20.6.4 CONCIUSION .. .ottt e e e e e 20-8

21 Power Management

2101 OVEIVIEW .ottt ittt et et et e e e e e e 211
21.2 Entering and Exiting Global Power Down Modettt 21-1
21.3 Effect Of Global Power Down On Peripherals 21-1
21.4 Detailed Sequence of Events For Global Power Down, 21-2
21.5 MMIO Register POWER_DOWN e e e e e e e 21-2
21.6 BIOCK POWEr DOWN oot e e e e e e e e e e e e 21-2

22 PCI-XIO External I/O Bus

22.1 Summary Functionality e 22-1
22. 1.1 DESCHIPHON . oottt e et e e e 22-1
22.2 BIOCK Diagramt e 22-3
223 Data Formats e 22-5
22,4 INerfaCe . .. oo 22-5
22.4.1 PCI-XIO Bus Interface DeSignot 22-5
22.4.1.1 Flash EEPROM e e e e 22-6
22.4.1.268KBUS /O DBVICEottt e e e e 22-6
22.4.1.3X86/ISABUS /O AEVICEot 22-6

22.4.1.4 Multiple Flash EEPROMo e e e e 22-6

225 XIO_CTL MMIO REGISIE . . o\t i it e e e e e e e e e e e et e e 22-7

16 PRELIMINARY SPECIFICATION

Philips Semiconductors

22.5.1 PCI_CLK Bus Clock FrequenCyt e 22-7
22.5.2 Wait State GeNeratorttt it e 22-8
22.6 PCI-XIO BUS TiMING . . o .o ot e e et et e e e e e e e e e e e e e e e 22-8
22.7 PCI-XIO Bus Controller Operation and Programmingttt 22-12
A PNX1300/01/02/11.
DSPCPU Operations
A.1 Alphabetic Operation LiSt oot A-1
A.2 Operation List By FUNCHON e e e e et e e e e e e A-2
AllOC . . o A-4
AllOCd . . A-5
AlIOCT .« . A-6
AllOCX . . A-7
A8l L A-8
ASl . L A-9
=] A-10
=] £ A-11
o] = L T [A-12
DIt aNAINY . . A-13
0112 1Y A-14
01 A-15
DX O . L A-16
DOITOW . o o A-17
(07 11 A-18
CUICY IS o A-19
CY IS o A-20
ACD L A-21
dinvalid . .. A-22
ASpIabS . . A-23
dspiadd A-24
dspidualabs A-25
dspidualadd A-26
dspidualmul A-27
dspidualsubo A-28
ASPIMUL . L A-29
ASPISUD . . A-30
ASpUAd . . . e e A-31
ASPUMUL L e A-32
dSpUQUAdAAAUIot e e e e A-33
ASPUSUD . e A-34
AUAIAST . . e A-35

PRELIMINARY SPECIFICATION

17

PNX1300/01/02/11 Data Book Philips Semiconductors

dUaliClipi . . e A-36
dUalUCHIPE . . . A-37
fabSVal . . o A-38
fabsvalflags A-39
fadd . A-40
faddflagso A-41
FIV L e A-42
fAIVIIAGS . o . e A-43
L1 | A-44
fegiflags . .. oo A-45
L0 =T A-46
fgeaflags A-47
L0 L A-48
Ot agS .« o e A-49
11T A-50
flegflags . .. oo A-51
S A-52
flesflags . .. oo A-53
UL L A-54
UIIAGS .« . o A-55
O . o A-56
fnegflags A-57
IO L o A-58
ISIgNflagS . . o A-59
L]0 A-60
L]0 L= Vo A-61
TSUD . A-62
fSUDfIagS . . o A-63
fUNSNITEL .« o A-64
fUNSNIE2 . o A-65
fUNSNITES L o A-66
N dSpiabS . .o A-67
h_dspidualabs A-68
NiabS A-69
N SELBO . .ottt A-70
N StB20 . oo A-71
T £ o A-72
IOy CIES . o A-73
A0S L A-74
= o [A-75

18 PRELIMINARY SPECIFICATION

Philips Semiconductors

2= o [A-76
[E5 N To 3 1= o A-77
10372 CS17=1 N A-78
L1001 A-79
ICIr A-80
10 =T o A-81
15T o A-82
1= o] A-83
11T A-84
B . o e A-85
UL . ot o A-86
1D T=T=T A-87
ifiXieeeflagso A-88
IXIZ . A-89
IXPZElagS . . . e A-90
111 A-91
1110 T A-92
ifloatflagso e A-93
1110 1 A-94
ifloatrzflags A-95
I . o A-96
10 =T A-97
0 A-98
o A-99
M e A-100
10 o A-101
L] A-102
L0 6 A-103
1 1 A-104
1 1T A-105
1 1 A-106
1 1S A-107
1 Y A-108
1 2o A-109
10 1 A-110
11T A-111
11T A-112
S L A-113
11 A-114
X L e A-115

PRELIMINARY SPECIFICATION

19

PNX1300/01/02/11 Data Book Philips Semiconductors

10011 o A-116
UL L A-117
MU L A-118
Mg . A-119
1T A-120
1= A-121
INONZEIO . . oo e e A-122
SUD L A-123
SUDI . L o A-124
IO . A-125
L0 A-126
T o e A-127
Tt L A-128
032 A-129
10320 . . A-130
(0 2 A-131
032X . e A-132
ISl e A-133
ISl e e A-134
] A-135
] A-136
mergeduallblsh A-137
MErgEISD . o A-138
MErgEMSD . o A-139
0] o A-140
PACKLBISD . . o A-141
PACKLBMSD .. A-142
PACKDY IS . o A-143
L= 1 A-144
Lo LC=1 11 G A-145
PrE 32X o A-146
(=3 (P A-147
L= 1 A-148
(o U= Vo F= Y o A-149
QUAAUMABX .+« v v oottt e et e e et e e e e e e e e A-150
QUAAUMIN . e o et e et e e et e e e A-151
qUadUMUIMSD .. o e A-152
FASTALUS . .o ot e e e A-153
(0 1 2= A-154
FEAAAPC . oo i et A-155

20

PRELIMINARY SPECIFICATION

Philips Semiconductors

FRAAPCSW . . o ottt ettt e e e e e e A-156
FRAUSPC .« .t ottt e A-157
(o A-158
FOl L A-159
SEX LD L e e A-160
X8 L e e A-161
SELD . o A-162
SELBA . o e A-163
SE3 A-164
SEB2d . e A-165
OB o A-166
SEB . . i A-167
UBY eSSl . . A-168
UCK DI o o A-169
UCHU .« o e A-170
UL oo A-171
UGl o o A-172
UTIEL G o .o A-173
UBIEBUU . . e A-174
U . . o A-175
ufixieeeflags o A-176
UBIXEZ L A-177
URIXEZEIagS . .o A-178
UFIOAL . . A-179
ufloatflagso A-180
URIOALIZ . . A-181
ufloatrzflagso A-182
LU0 T o A-183
LU0 T o A-184
UG o e A-185
UG o s A-186
UMM A-187
UIDLG . .o A-188
UIDLBd .. o e e A-189
UIDL BT .. A-190
UIAL X . o et e A-191
U8 .o A-192
U8B . . A-193
UIDBE o A-194
UlBO .o o A-195

PRELIMINARY SPECIFICATION 21

PNX1300/01/02/11 Data Book Philips Semiconductors

Ul . . e A-196
UlBS A-197
UlBST . . A-198
UM . oo A-199
UMEBUU . .. ot e et e et e e e e e e A-200
UMM L e e e et e e e e e e A-201
UMUL L e A-202
UMUIM L e e e A-203
UNBO « et e et e e e e e e e e e A-204
UNEBOI . .ot e e A-205
WHEEAPC .« .o ot e e e A-206
WEEEPCSW .« o e ettt e e e e e e e e e e A-207
WEIEESPC © o o ot e ettt e e e e e A-208
ZEX LD . A-209
ZBXB i A-210

... A-212

B MMIO Register Summary
B.1 MMIO REGISIEIS . . ottt e e e e e e e B-1

C Endian-ness

Gl PUIPOSE . . e e e C-1
C.2 Little and Big Endian Addressing CONVeNtioNSttt e e C-1
C.3 Test to Verify the Correct Operation of PNX1300 in Big and Little Endian SystemsC-2
C.4 Requirement for the PNX1300 to Operate in Either Little Endian or Big Endian Mode C-2
CAdDataCache C-2
C.4.21Instruction Cache C-3
C.4.3 PNX1300 PClInterface Unitot e C-3
C.4.4 Image Coprocessor (ICP)ot C-3
C.4.5Video In (VI) and Video Out (VO) UNItSttt e e C-7
C.4.6 Audio In (Al), Audio-Out (AO), and SPDIF Out (SDO) UNItS'ereeennannn.. c-7
C.4.7 Variable Length Encoder (VLD) Unit e e C-7
C.4.8 Synchronous Serial Interface (SSI) C-8
C.4.9 ComMPIlEr . . . C-9
G5 SUMMEAIY . .. e C-9
C.6 REMBIEBNCES . .. o C-9
Index

22 PRELIMINARY SPECIFICATION

Pin List Chapter 1

by John Chang, Wenyi Song, Thorwald Rabeler, Luis Lucas

1.1 PNX1300 SERIES VERSUS TM-1300

The following summarizes differences between TM-1300 and PNX1300/01/02/11:

« Lower core voltage for PNX1311 (2.2V core voltage) and therefore lower power consumption.
+« DSPCPU speed of up to 200 MHz
* SDRAM speed of up to 183 MHz.

¢ Support for 256 Mbit SDRAM organized in x16. The REFRESH counter must be changed. Refer for in Chapter 12,
“SDRAM Memory System” for details.

¢ Support for 16- and 32-bit Main Memory Interface.

« Simplified power supplies sequencing (see Section 1.9.4).

« Additional mode where VI_DATA[9:8] in message passing mode are not affected by the VI_DVALID signal.

« Bug fixed for PCI Special Cycles. PNX1300 Series discards PCl Special Cycles issued by some PCI chipsets.
« Autonomous boot bug in non 1:1 ratio is fixed, resulting in 2KB boot EEPROM size for all CPU:SDRAM ratios.

In the document, ‘PNX1300 Series’ is used interchangebly with ‘PNX1300/01/02/11’, and it always refers to
PNX1300, PNX1301, PNX1302 and PNX1311 products. Any exception will be noted.

1.2 BOUNDARY SCAN NOTICE

PNX1300 Series implements full IEEE 1149.1 boundary scan. Any PNX1300 Series pin designated “IN” only (from a
functionality point of view) can become an output during boundary scan.

1.3 /O CIRCUIT SUMMARY

PNX1300 Series has a total of 169 functional pins, excluding VDDQ, VSSQ, VREF_PCI and VREF_PERIPH and digital
power/ground. PNX1300 Series uses the types of I/O circuits shown in the table below.

Pad Type Pad Type Description

PCI PCI2.1 compliant I/O, capable of using 3.3-V or 5-V PCI signaling conventions.
PCIOD PCI2.1 compliant Open Drain 1/O, capable of using 3.3-V or 5-V PCI signaling conventions.
1ICOD Open drain 3.3-V or 5-V C 110 (for 1’c pins).

STRG3 3.3-V only low impedance 1/0. Requires board level 27-33 ohm series terminator resistor to match 50 ohm
PCB trace.

NORMS3 | 3.3-V only I/O circuit with regular drive strength and board trace matched drive impedance.

STRG5 3.3-V low impedance output, combined with 5-V tolerant input. If used as output, it requires a board level
27-33 ohm series terminator resistor to match 50-ohm PCB trace.

WEAK5 | 3.3-V regular impedance output, with slow rise/fall, combined with 5-V tolerant input.

For the pins with 5-V input capability, the special pins VREF_PCI or VREF_PERIPH determine 3.3- or 5-V input toler-
ance, as per the table in Section 1.6. The above pad types are used in the modes listed in the following table.

Modes Description
IN Input only, except during boundary scan
ouT Output only, except during boundary scan
oD Open drain output - active pull low, no active drive high, requires external pull-up
110 Output or input
1/0D Open drain output with input - active pull low, no active drive high, requires external pull-up

Unused pins may remain floating, i.e. unconnected.
All pins that drive a clock should drive a series resistor.

PRELIMINARY SPECIFICATION 1-1

PNX1300/01/02/11 Data Book Philips Semiconductors

14 SIGNAL PINLIST

In the table below, a pin name ending in a ‘#' designates an active-low signal (the active state of the signal is a low
voltage level). All other signals have active-high polarity.

BGA Pad

Pin Name Ball Type

Mode Description

Main Clock Interface

TRI_CLKIN L20 | NORM3 IN Main input clock. The SDRAM clock outputs (MM_CLKO and MM_CLK1) can be set to
2x or 3x this frequency. The on-chip DSPCPU clock (DSPCPU_CLK) can be set to 1x,
5/4, 4/3, 3/2 or 2x the SDRAM clock frequency. Maximum recommended ppm level is
+/- 100 ppm or lower to improve jitter on generated clocks. Duty cycle should not
exceed 30/70% asymmetry.

The operating limits of the internal PLLs are:

¢ 27 MHz < Output of the SDRAM PLL < 200 MHz

¢ 33 MHz < Output of the CPU PLL < 266 MHz

These are not the speed grades of the chips, just the PLL limits.

VDDQ K20 N/A PWR | Quiet VDD for the PLL subsystem. This pin should be supplied from VDD through a
low-Q series inductor. It should be bypassed for AC to VSSQ, using a dual capacitor
bypass (hi and low frequency AC bypass).

VSSQ L19 N/A GND | Quiet VSS for the PLL subsystem. Should be AC bypassed to VDDQ, but should
otherwise be left DC floating. It is connected on-chip to VSS. No external coil or
other connection to board ground is needed, such connection would create a
ground loop.

Miscellaneous System Interface

TRI_RESET# G19 | WEAKS IN PNX1300/01/02/11 RESET input. This pin can be tied to the PCI RST# signal in PCI
bus systems. Upon releasing RESET, PNX1300/01/02/11 initiates its boot protocol.

BOOT_CLK T20 | NORM3 IN Used for testing purposes. Must be connected to TRI_CLKIN for normal operation.

TESTMODE P19 | NORM3 IN Used for testing purposes. Must be connected to VSS for normal operation.

SCANCPU D20 | NORM3 IN Used for testing purposes. Must be connected to VSS for normal operation.

RESERVED1 E19 | NORM3 lfe} Reserved pin. Has to be left unconnected for normal operation.

RESERVED2 D19 | STRG5 lfe} Reserved pin. Has to be left unconnected for normal operation.

VREF_PCI F2 N/A PWR | VREF_PCI determines the mode of operation of the PCI pins listed in Section 1.6.

VREF_PCI must be connected to 5V for use in a 5V PClI signaling environment or to
VSS (0 V) for use in 3.3-V PCI signaling environment. The supply to this pin should be
AC bypassed and provide 40 mA of DC sink or source capability. Note that this pin
can not be directly connected to the PCI ‘I/O designated power pins’ in a dual
voltage PCI plug-in card. Board level conversion circuitry is required.

VREF_PERIPH C18 N/A PWR | VREF_PERIPH determines the mode of operation of the 1/O pins listed inSection 1.6.
VREF_PERIPH should be connected to 5V if any of the listed 1/O pins provided should
be 5-V input voltage capable. VREF_PERIPH should be connected to VSS (0-V) if all
listed I/O pins are 3.3-V only inputs. The supply to this pin should be AC bypassed and
provide 40 mA of DC sink or source capability.

TRI_USERIRQ G20 | WEAKS IN General purpose level/edge interrupt input. Vectored interrupt source number 4.

TRI_TIMER_CLK | H19 | WEAK5 IN External general purpose clock source for timers. Max. 40 MHz.

1-2 PRELIMINARY SPECIFICATION

Philips Semiconductors

Pin List

BGA

Pad

Pin Name Ball Type Mode Description
Main Memory Interface
MM_CLKO Y10 | STRG3 | OUT | SDRAM output clock at 2x or 3x TRI_CLKIN frequency. Two identical outputs are pro-
MM_CLK1 W10 vided to reliably drive several small memory configurations without external glue.
A series terminating resistor close to PNX1300/01/02/11 is required to reduce ringing.
For driving a 50-ohm trace, a resistor of 27 to 33 ohm is recommended. It is recom-
mended against using higher impedance traces in the SDRAM signals.
MM_AQ0 W12 | NORM3 | OUT | Main memory address bus; used for row and column addresses
MM_A01 Y12
MM_A02 w11
MM_A03 Y11
MM_A04 Y9
MM_A05 W9
MM_A06 V9
MM_A07 Y8
MM_A08 w8
MM_A09 Y7
MM_A10 V12
MM_A11 Y13 WARNING: MM_A[13:11] DO NOT CONNECT DIRECTLY TO SDRAM A[13:11] pins.
MM_A12 w13 Refer to Chapter 12, “SDRAM Memory System” for accurate connection diagrams.
MM_A13 Y14
MM_DQO0 Y20 | NORM3 /O | 32-bit data I/O bus.
MM_DQO01 V18 The Main Memory Interface unit also supports a 16-bit I/O interface.Refer to Chapter
MM_DQO02 w19 12, “SDRAM Memory System.”
MM_DQO03 W20
MM_DQO04 uU18
MM_DQO05 V19
MM_DQO06 V20
MM_DQO07 T18
MM_DQO08 w18
MM_DQO09 V17
MM_DQ10 Y18
MM_DQ11 w17
MM_DQ12 Y17
MM_DQ13 W16
MM_DQ14 Y16
MM_DQ15 V15
MM_DQ16 w7
MM_DQ17 Y6
MM_DQ18 W6
MM_DQ19 V6
MM_DQ20 Y5
MM_DQ21 W5
MM_DQ22 Y4
MM_DQ23 w4
MM_DQ24 V2
MM_DQ25 V3
MM_DQ26 w1
MM_DQ27 w2
MM_DQ28 Y1
MM_DQ29 Y2
MM_DQ30 w3
MM_DQ31 Y3
MM_CKEO Y19 | NORM3 | OUT | Clock enable output to SDRAMs. Two identical outputs are provided in order to reliably
MM_CKE1 Ul drive several small memory configurations without external glue.
MM_CS0# U2 | NORM3 | OUT | Chip select for DRAM rank n; active low
MM_CS1# u20 In PNX1300/01/02/11 the chip selects pins may be used as address pins to support
MM_CS2# u3 the 256 Mbit SDRAM device organized in x16. Refer to Chapter 12, “SDRAM Memory
MM_CS3# u19 System.”
MM_RAS# W14 | NORM3 | OUT | Row address strobe; active low
MM_CAS# Y15 | NORM3 | OUT | Column address strobe; active low
MM_WE# W15 | NORM3 | OUT | Write enable; active low

PRELIMINARY SPECIFICATION 1-3

PNX1300/01/02/11 Data Book

Philips Semiconductors

Pin Name BGA Pad Mode Description
Ball Type

MM_DQMO T19 [NORM3 | OUT | MM_DQ Mask Enable; these are byte enable signals for the 32-bit MM_DQ bus

MM_DQM1 R18

MM_DQM2 V1

MM_DQM3 \Z!

PCl Interface (Note: current buffer design allows drive/receive from either 3.3 or 5V PCI bus)

PCI_CLK T2 PCI IN All PCI input signals are sampled with respect to the rising edge of this clock. All PCI
outputs are generated based on this clock Clock is required for normal operation of
the PCI block.

PCI_ADOO T1 PCI /10 Multiplexed address and data.

PCI_ADO1 R3

PCI_ADO02 R2

PCI_ADO3 R1

PCI_AD0O4 P2

PCI_ADO5 P1

PCI_ADO06 N2

PCI_ADO7 N1

PCI_ADO08 M2

PCI_ADO09 M1

PCI_AD10 L2

PCI_AD11 L1

PCI_AD12 K1

PCI_AD13 K2

PCI_AD14 J1

PCI_AD15 J2

PCI_AD16 D1

PCI_AD17 D3

PCI_AD18 C1

PCI_AD19 B2

PCI_AD20 B1

PCI_AD21 c2

PCI_AD22 C3

PCI_AD23 Al

PCI_AD24 A3

PCI_AD25 c4

PCI_AD26 B4

PCI_AD27 A4

PCI_AD28 A5

PCI_AD29 C6

PCI_AD30 B6

PCI_AD31 A6

PCI_C/BE#0 M3 PCI 110 Multiplexed bus commands and byte enables. High for command, low for byte enable.

PCI_C/BE#1 J3

PCI_C/BE#2 D2

PCI_C/BE#3 B3

PCI_PAR H1 PCI 110 Even parity across AD and C/BE lines.

PCI_FRAME# E2 PCI /10 Sustained tri-state. Frame is driven by a master to indicate the beginning and duration
of an access.

PCI_IRDY# El PCI 110 Sustained tri-state. Initiator Ready indicates that the bus master is ready to complete
the current data phase.

PCI_TRDY# F3 PCI 110 Sustained tri-state. Target Ready indicates that the bus target is ready to complete the
current data phase.

PCI_STOP# G2 PCI 110 Sustained tri-state. Indicates that the target is requesting that the master stop the cur-
rent transaction.

PCI_IDSEL A2 PCI IN Used as chip select during configuration read/write cycles.

PCI_DEVSEL# F1 PCI 110 Sustained tri-state. Indicates whether any device on the bus has been selected.

PCI_REQ# B7 PCI /0 | Driven by PNX1300/01/02/11 as PCI bus master to request use of the PCI bus.

PCI_GNT# B5 PCI IN Indicates to PNX1300/01/02/11 that access to the bus has been granted.

PCI_PERR# Gl PCI I/0 | Sustained tri-state. Parity error generated/received by PNX1300/01/02/11.

PCI_SERR# H2 PCI OD | System error. This signal is asserted when operating as target and detecting an
address parity error.

1-4

PRELIMINARY SPECIFICATION

Philips Semiconductors

Pin List

Pad

Pin Name Ball Type Mode Description

PCI_INTA# C9 | PCIOD | I/OD |+ Can operate as input (power up default) or output, as determined by direction con-

PCI_INTB# A8 PCI 1/0/0D trol bits in PCI MMIO register INT_CTL.

PCI_INTC# B8 | PCIOD | I/OD |+ Asinput, a PCI_INT# pin can be used to receive PCl interrupt requests (normal

PCI_INTD# A7 PCIOD 1/0D PCl use is active low, level sensitive mode, but the VIC can be set to treat these as

positive edge triggered mode). As input, a PCI_INT# pin can also be used as a
general interrupt request pin if not needed for PCI.

« As output, the value of a PCI_INT# can be programmed through PCI MMIO regis-
ters to generate interrupts for other PCI masters.

« Whenever XIO bus functionality is active, PCI_INTB# is a push-pull CMOS /O pin.
When the XIO bus is not active and regular PCI bus functionality is activated, then
PCI_INTB# has a PCI compatible open drain output.

JTAG Interface (debug access port and 1149.1 boundary scan port)

JTAG_TDI F20 | WEAKS5 IN JTAG test data input

JTAG_TDO F18 | WEAKS /0 | JTAG test data output. This pin can either drive active low, high or float.

JTAG_TCK F19 | WEAKS IN JTAG test clock input

JTAG_TMS E20 | WEAKS IN JTAG test mode select input

Video In
VI_CLK C20 | STRG5 /0 |+ If configured as input (power up default):a positive transition on this incoming video

clock pin samples all other VI_DATA input signals below if VI_DVALID is HIGH. If
VI_DVALID is LOW, VI_DATA is ignored. Clock and data rates of up to 81 MHz are
supported. PNX1300 Series supports an additional mode where VI_DATA[9:8] in
message passing mode are not affected by the VI_DVALID signal,Section 6.6.1 on
page 6-12.

« If configured as output: programmable output clock to drive an external video A/D
converter. Can be programmed to emit integral dividers of DSPCPU_CLK.

If used as output, a board level 27-33 ohm series resistor is recommended to reduce

ringing.

VI_DVALID Al17 | WEAKS IN VI_DVALID indicates that valid data is present on the VI_DATA lines. If HIGH, VI_DATA
will be accepted on the next VI_CLK positive edge. If LOW, no VI_DATA will be sam-
pled. PNX1300 Series supports an additional mode where VI_DATA[9:8] in message
passing mode are not affected by the VI_DVALID signal, Section 6.6.1 on p age6-12.

VI_DATAO D18 | WEAK5 IN CCIR656 style YUV 4:2:2 data from a digital camera, or general purpose high speed

VI_DATA1 C19 data input pins. Sampled on VI_CLK if VI_DVALID HIGH.

VI_DATA2 B20

VI_DATA3 B19

VI_DATA4 A20

VI_DATA5 A19

VI_DATA6 c17

VI_DATA7 B18

VI_DATA8 A18 | WEAKS IN Extension high speed data input bits to allow use of 10 bit video A/D converters in

VI_DATA9 B17 raw1l0 modes. VI_DATA[8] serves as START and VI_DATA[9] as END message input in
message passing mode. Sampled on positive transitions of VI_CLK if VI_DVALID
HIGH. PNX1300 Series supports an additional mode where VI_DATA[9:8] in message
passing mode are not affected by the VI_DVALID signal, Section 6.6.1 on p age6-12.

I°C Interface

IIC_SDA R19 | 1ICOD /0D | |2¢ serial data

IIC_SCL R20 | 1ICOD /0D | 12C clock

Video Out

VO_DATAO P20 | WEAK5 | OUT | CCIR656 style YUV 4:2:2 digital output data, or general purpose high speed data out-

VO_DATA1 N19 put channel. Output changes on positive edge of VO_CLK.

VO_DATA2 N20

VO_DATA3 M18

VO_DATA4 M19

VO_DATA5 M20

VO_DATA6 K19

VO_DATA7 J20

PRELIMINARY SPECIFICATION 1-5

PNX1300/01/02/11 Data Book

Philips Semiconductors

Pin Name

BGA Pad

Ball

Type Mode

Description

VO_l01

J18

WEAKS l[e]

This pin can function as HS output or as STMSG (Start Message) output.
« If set as HS output, it outputs the horizontal sync signal
« In message passing mode, this pin acts as STMSG output.

VO_102

H20

WEAKS 110

This pin can function as FS (frame sync) input, FS output or as ENDMSG output.

« If set as FS input, it can be set to respond to positive or negative edge transitions.

« If the Video Out (VO) unit operates in external sync mode and the selected transition
occurs, the VO unit sends two fields of video data. Note: this works only once after a
reset.

« In message passing mode, this pin acts as ENDMSG output.

VO_CLK

STRG5 l[e]

The VO unit emits VO_DATA on a positive edge of VO_CLK. VO_CLK can be config-

ured as input (reset default) or output.

« If configured as input: VO_CLK is received from external display clock master cir-
cuitry.

« If configured as output, PNX1300/01/02/11 emits a programmable clock frequency.
The emitted frequency can be set between approx. 4 and 81 MHz with a sub-Hertz
resolution. The clock generated is frequency accurate and has low jitter properties
due to a combination of an on-chip DDS (Direct Digital Synthesizer) and VCO/PLL.

If used as output, a board level 27-33 ohm series resistor is recommended to reduce

ringing.

Audio In (always acts as receiver, but can be master or slave for A/D timing)

AI_OSCLK

B15

STRG3 | OUT

Over-sampling clock. This output can be programmed to emit any frequency up to 40

MHz with a sub-Hertz resolution. It is intended for use as the 256f5 or 384f5 over sam-
pling clock by external A/D subsystem. A board level 27-33 ohm series resistor is rec-
ommended to reduce ringing.

Al_SCK

Al16

STRG5 110

* When the Audio In (Al) unit is programmed as a serial-interface timing slave
(power-up default), Al_SCK is an input. Al_SCK receives the serial bit clock from
the external A/D subsystem. This clock is treated as fully asynchronous to the
PNX1300/01/02/11 main clock.

* When the Al unit is programmed as the serial-interface timing master, Al_SCKis an
output. Al_SCK drives the serial clock for the external A/D subsystem. The fre-
quency is a programmable integral divisors of the Al_OSCLK frequency.

AI_SCK is limited to 22 MHz. The sample rate of valid samples embedded within the

serial stream is variable. If used as output, a board level 27-33 ohm series resistor is

recommended to reduce ringing.

Al_SD

C15

WEAKS IN

Serial data from external A/D subsystem. Data on this pin is sampled on positive or
negative edges of Al_SCK as determined by the CLOCK_EDGE bit in the Al_SERIAL
register.

Al_WS

B16

WEAKS l[e]

« When the Al unit is programmed as the serial-interface timing slave (power-up
default), AI_WS acts as an input. AI_WS is sampled on the same edge as selected
for Al_SD.

* When Audio In is programmed as the serial-interface timing master, Al_WS acts as
an output. It is asserted on the opposite edge of the Al_SD sampling edge.

AI_WS is the word-select or frame-synchronization signal from/to the external A/D

subsystem.

1-6

PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
. BGA Pad .
Pin Name Ball Type Mode Description
Audio Out (always acts as sender, but can be master or slave for D/A timing)

AO_OSCLK B14 | STRG3 | OUT | Over sampling clock. This output can be programmed to emit any frequency up to 40
MHz, with a sub-Hertz resolution. It is intended for use as the 256 or 384f5 over sam-
pling clock by the external D/A conversion subsystem. A board level 27-33 ohm series
resistor is recommended to reduce ringing.

AO_SCK Al4 | STRG5 /0 |+ When the Audio Out (AO) unit is programmed to act as the serial interface timing
slave (power up default), AO_SCK acts as input. It receives the Serial Clock from
the external audio D/A subsystem. The clock is treated as fully asynchronous to the
PNX1300/01/02/11 main clock.

* When the AO unit is programmed to act as serial interface timing master, AO_SCK
acts as output. It drives the serial clock for the external audio D/A subsystem. The
clock frequency is a programmable integral divisor of the AO_OSCLK frequency.

AO_SCK is limited to 22 MHz. The sample rate of valid samples embedded within the

serial stream is variable. If used as output, a board level 27-33 ohm series resistor is

recommended to reduce ringing.

AO_SD1 B13 | WEAK5 | OUT | Serial data to external stereo audio D/A subsystem for first 2 of 8 channels. The timing
of transitions on this output is determined by the CLOCK_EDGE bit in the AO_SERIAL
register, and can be on positive or negative AO_SCK edges.

AO_SD2 Al3 | WEAK5 | OUT | Serial data.

AO_SD3 C12 | WEAK5 | OUT | Serial data.

AO_SD4 B12 | WEAK5 | OUT | Serial data.

AO_WS A15 | WEAKS /0 |+ When the AO unit is programmed as the serial-interface timing slave (power-up
default), AO_WS acts as an input. AO_WS is sampled on the opposite AO_SCK
edge at which AO_SDx are asserted.

« When the AO unit is programmed as serial-interface timing master, AO_WS acts as
an output. AO_WS is asserted on the same AO_SCK edge as AO_SDx.

AO_WS is the word-select or frame-synchronization signal from/to the external D/A

subsystem. Each audio channel receives 1 sample for every WS period.

S/PDIF Output (Output)

SPDO A12 | STRG3 | OUT | Self clocking serial data stream as per IEC958, with 1937 extensions. Note that the
low impedance output buffer requires a 27 to 33 ohm series terminator close to
PNX1300/01/02/11 in order to match the board trace impedance. This series termina-
tor can be/must be part of the voltage divider needed to create the coaxial output
through the AC isolation transformer.

Synchronous Serial Interface (SSI) to an off-chip modem front-end

SSI_CLK B11 | WEAK5 IN Clock signal of the synchronous serial interface to an off-chip modem analog frontend
or ISDN terminal adapter; provided by the receive channel of an external communica-
tion device.

SSI_RXFSX A1l | WEAKS IN Receive frame sync reference of the synchronous serial interface, provided by the
receive channel of an external communication device.

SSI_RXDATA A10 | WEAKS5 IN Receive serial data input; provided by the receive channel of an external communica-
tion device.

SSI_TXDATA B10 | WEAK5 | OUT | Transmit serial data output; sent to the transmit channel of the external communication
device.

SSI_I01 A9 | WEAKS /0 | General purpose programmable 1/O. Set to input on power up.

SSI_I02 B9 | WEAKS /0 | General purpose programmable 1/O. Set to input on power up. Can also be pro-
grammed to function as the transmit channel frame synchronization reference output.

PRELIMINARY SPECIFICATION 1-7

PNX1300/01/02/11 Data Book Philips Semiconductors

15 POWER PIN LIST

VSS (ground) VCC (3.3V I/O supply) VDD (2.5V core supply)
C5 H8 L9 c7 G17 R4 Cc8 H17 N17
C16 H9 L10 c10 G18 R17 C13 H18 N18
D4 H10 L11 Cc11 K3 U6 D8 Ja us
D5 H11 L12 C14 K4 u7 D9 Ji7 U9
D16 H12 L13 D6 K17 u10 D12 M4 u12
D17 H13 M8 D7 K18 u11 D13 M17 u13
E3 J8 M9 D10 L3 ul14 H3 N3 V8
E4 J9 M10 D11 L4 u15 H4 N4 V13
E17 J10 M11 D14 L17 V7
E18 J11 M12 D15 L18 V10
T3 J12 M13 F4 P3 V11
T4 J13 N8 F17 P4 V14
T17 K8 N9 G3 P17
u4 K9 N10 G4 P18
us K10 N11
u16 K11 N12
u17 K12 N13
V5 K13
V16 L8

1-8 PRELIMINARY SPECIFICATION

Philips Semiconductors

Pin List

16 PINREFERENCE VOLTAGE

With the exception of Open Drain mode outputs, outputs always drive to a level determined by the 3.3-V 1/O voltage.
VREF_PERIPH and VREF_PCI purely determine input voltage clamping, not input signal thresholds or output levels.

Inputs always in 3.3-V mode Output only pins
TRI_CLKIN VO_DATAO Al_OSCLK
BOOT_CLK VO_DATAL AO_OSCLK
TESTMODE VO_DATA2 AO_SD1
SCANCPU VO_DATA3 AO_SD2
RESERVED1 VO_DATA4 AO_SD3
VO_DATA5 AO_SD4
VO_DATAG SSI_TXDATA
VO_DATA7 SPDO
VREF_PCI determined mode VREF_PERIPH determined mode SDRAM i/f (always 3.3-Volt mode)
PCI_ADOO PCI_AD27 TRI_USERIRQ Al_SCK MM_CLKO MM_DQM2
PCI_ADO1 PCI_AD28 TRI_TIMER_CLK Al_SD MM_CLK1 MM_DQM3
PCI_ADO2 PCI_AD29 JTAG_TDI Al_WS MM_A00 MM_DQ13
PCI_ADO3 PCI_AD30 JTAG_TDO AO_SCK MM_A01 MM_DQ14
PCI_ADO4 PCI_AD31 JTAG_TCK AO_WS MM_A02 MM_DQ15
PCI_ADO5 PCI_CLK JTAG_TMS SSI_CLK MM_A03 MM_DQ16
PCI_ADO6 PCI_C/BE#0 VI_CLK SSI_RXFSX MM_A04 MM_DQ17
PCI_ADO7 PCI_C/BE#1 VI_DVALID SSI_RXDATA MM_A05 MM_DQ18
PCI_ADO8 PCI_C/BE#2 VI_DATAO SSI_I01 MM_A06 MM_DQ19
PCI_ADO09 PCI_C/BE#3 VI_DATA1 SSI_I02 MM_A07 MM_DQ20
PCI_AD10 PCI_PAR VI_DATA2 RESERVED2 MM_A08 MM_DQ21
PCI_AD11 PCI_FRAME# VI_DATA3 MM_A09 MM_DQ22
PCI_AD12 PCI_IRDY# VI_DATA4 MM_A10 MM_DQ23
PCI_AD13 PCI_TRDY# VI_DATA5 MM_A11 MM_DQ24
PCI_AD14 PCI_STOP# VI_DATA6 MM_A12 MM_DQ25
PCI_AD15 PCI_IDSEL VI_DATA7 MM_A13 MM_DQ26
PCI_AD16 PCI_DEVSEL# VI_DATA8 MM_DQO00 MM_DQ27
PCI_AD17 PCI_REQ# VI_DATA9 MM_DQO1 MM_DQ28
PCI_AD18 PCI_GNT# IIC_SDA MM_DQO02 MM_DQ29
PCI_AD19 PCI_PERR# IIC_SCL MM_DQO03 MM_DQ30
PCI_AD20 PCI_SERR# VO_IO1 MM_DQO04 MM_DQ31
PCI_AD21 PCI_INTA# VO_l02 MM_DQO05 MM_CKEO
PCI_AD22 PCI_INTB# VO_CLK MM_DQO06 MM_CKE1
PCI_AD23 PCI_INTC# MM_DQO07 MM_CSO0#
PCI_AD24 PCI_INTD# MM_DQO08 MM_CS1#
PCI_AD25 TRI_RESET# MM_DQO09 MM_CS2#
PCI_AD26 MM_DQ10 MM_CS3#
MM_DQ11 MM_RAS#
MM_DQ12 MM_CAS#
MM_DQMO MM_WE#
MM_DQM1
PRELIMINARY SPECIFICATION 1-9

PNX1300/01/02/11 Data Book

Philips Semiconductors

1.7 PACKAGE
HBGA292: plastic, heatsink ball grid array package; 292 balls; body 27 x 27 x 1.75 mm SOT553-1
D B
Dy (]
|
Il /\
I
/ y
ball AL T [}
index area A Ao
. v)
I toeae A OO UU
Y
| 3
k /
‘
! 1
> k-
p—iC
F- v @] s
e oW !
ehe [riolov® @] i
v[boocoooddoooboooooe !
w 800000 000000000000
v| 0000000 0000000000000
U | 00000000000000000000
T| 0000 0060 | [e]
R | 0000 ‘ 0000 | y
p| 0000 000+
N | 0000 000000 0006+
M| 0000 000[000 cooo | 4
L |1 0000_ Q00000 0000 |
K| 06000 000000 0000 1 b
3 | 0000 000000 0000
H| 0000 ooo‘ooo 0000
¢ | cooo 0000
F| ooo0 ! 0000
E | 0000 0000
D| 0000000000000 0000000 K
c | 00000000000000000000 / \
B| 00000000000000000000 \
A oooooooooo‘oooooooeuv [J
2 4 6 8 10 12 14 16 18 20 \
1 3 5 7 9 11 13 15 17 19 N~ .
X
0 10 20 mm
L L L L L L L L L |
- . . scale
DIMENSIONS (mm are the original dimensions)
A :
UNIT| o | AL Ay b D Dq E Eq e eq D] k \ w y Y1
0.70 | 1.83 | 0.90 | 27.2 | 24.1 | 27.2 | 24.1 210 | 4.2
mm 2511 o050 | 163 | 0.60 | 26.8 | 23.9 | 26.8 | 239 | 127 |2413] 154 | 35 | 02 | 02 | 0151 025
1.8 ORDERING INFORMATION

To order 143-MHz/2.5V product, part number is ‘PNX1300’, 12 nc product code 9352 7097 6557.
To order 180-MHz/2.5V product, part number is ‘PNX1301’, 12 nc product code 9352 7097 9557.
To order 200-MHz/2.5V product, part number is ‘PNX1302’, 12 nc product code 9352 7098 2557.
To order 166-MHz/2.2V product, part number is ‘PNX1311’, 12 nc product code 9352 7098 5557.

1-10

PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
19 PARAMETRIC CHARACTERISTICS
19.1 PNX1300/01/02/11 Absolute Maximum Ratings
Permanent damage may occur if these conditions are exceeded
Symbol Parameter Min. Max Units Notes

Vpbpmax 2.5-V core supply voltage (PNX1300/01/02/11) -0.5 35 \%

Veemax 3.3-V I/O supply voltage -0.5 4.6 \

Visy DC input voltage on all 5-V pins -0.5 VX+0.5 \

V|33v DC input voltage on all 3.3-V pins -05 VCC+0.3 \

Tstg Storage temperature range -65 150 Deg. C

Tcase Operating case temperature range 0 120 Deg.C

HBMEgsp Human Body Model Electrostatic handling for all pins - - CLASS 1C

MMEgsp Machine Model Electrostatic handling for all pins - - CLASS A

Notes: 1. VXinthe 5V mode pin is either VREF_PCI or VREF_PERIPH, see Section 1.6.

2. JEDEC Standard, June 2000
3. JEDEC Standard, October 1997

1.9.2 PNX1300/01/02 Operating Range and Thermal Characteristics

Functional operation, long-term reliability and AC/DC characteristics are guaranteed for the operating conditions below.

Symbol Parameter Minimum | Typical | Maximum | Units
Vpp PNX1300/01/02 Core supply voltage 2.375 2.50 2.625 \%
Vee 1/0 supply voltage 3.135 3.30 3.465 \%
Tcase Operating case temperature range 0 85 °C
Wit junction to case thermal resistance 3.8 °C/W
Vja junction to ambient thermal resistance (natural convection) 15 °C/IW

1.9.3 PNX1311 Operating Range and Thermal Characteristics

Functional operation, long-term reliability and AC/DC characteristics are guaranteed for the operating conditions below.

Symbol Parameter Minimum | Typical | Maximum | Units
Vpp PNX1311 Core supply voltage 2.090 2.20 2.310 \%
Vee 1/0 supply voltage 3.135 3.30 3.465 \%
Tcase Operating case temperature range 0 85 °C
Wit junction to case thermal resistance 3.8 °C/W
Yja junction to ambient thermal resistance (natural convection) 15 °C/IW
194 PNX1300/01/02/11 Power Supply Sequencing
Power application and power removal should obey the following rule:

Vpp should never exceed V¢ by more than 0.5V
Permanent damage may occur if this rule is not observed.

PRELIMINARY SPECIFICATION 1-11

PNX1300/01/02/11 Data Book

Philips Semiconductors

1.9.5 PNX1300/01/02 DC/AC Characteristics
Symbol Parameter Condition/Notes Min. Max Units

VDD Core supply voltage 2.375 2.625 \%
VCC 1/0 supply voltage 3.135 3.465 \%
IpD-typ Core supply current 200 MHz CPU operation (Max. application) 1400 mA
lccyp 1/0 supply current 183 MHz SDRAM operation (Max. application) 160 mA
IpD-pdn Core supply current CPU power down mode; 200 MHz 300 mA
lcc-pdn 1/0 supply current CPU power down mode; 183 MHz 50 mA
VIH-Sv Input HIGH voltage for I/0-5 V Note 1. All I/O’'s except IICOD 2.0 VX+ 0.5 \%
Viy-3.3v Input HIGH voltage for I/0-3.3 V All I/Os except ICOD 2.0 Vec+0.3 \
VIL-Sv Input LOW voltage for 1/0-5 V All I/Os except ICOD -0.5 0.8 \%
VIL-3.3v Input LOW voltage for 1/0-3.3 V All I/Os except ICOD -0.3 0.8 \%
L5y Input leakage current for I/0-5 V 0<V|y<27V -70 70 UA
3.3 Input leakage current for I/0-3.3V | 0 <V|y < 2.7V -0 10 UA
CIN Input pin capacitance 8 pF
Notes: 1. VX for a 5V mode pin is either VREF_PCI or VREF_PERIPH, see Section 1.6.

1.9.6 PNX1311 DC/AC Characteristics

Symbol Parameter Condition/Notes Min. Max Units

VDD Core supply voltage 2.090 2.310 \%
VCC 1/0 supply voltage 3.135 3.465 \%
IpD-typ Core supply current 166 MHz CPU operation (Max. application) 1110 mA
lccyp 1/0 supply current 166 MHz SDRAM operation (Max. application) 145 mA
IpD-pdn Core supply current CPU power down mode; 166 MHz 215 mA
lcc-pdn 1/0 supply current CPU power down mode; 166 MHz 46 mA
VIH-Sv Input HIGH voltage for I/0-5 V Note 1. All I/O’'s except IICOD 2.0 VX+ 0.5 \%
Viy-3.3v Input HIGH voltage for I/0-3.3 V All I/Os except IICOD 2.0 Vec+0.3 \
VIL-Sv Input LOW voltage for 1/0-5 V All I/Os except ICOD -0.5 0.8 \%
VIL-3.3v Input LOW voltage for 1/0-3.3 V All I/Os except ICOD -0.3 0.8 \%
L5y Input leakage current for I/0-5 V 0<V|y<27V -70 70 UA
3.3 Input leakage current for I/0-3.3V | 0 <V|y < 2.7V -0 10 UA
CIN Input pin capacitance 8 pF

Notes: 1. VX for a 5V mode pin is either VREF_PCI or VREF_PERIPH, see Section 1.6.

1-12 PRELIMINARY SPECIFICATION

Philips Semiconductors

Pin List

1.9.7

The power consumption of PNX1300 Series is depen-
dent on the activity of the DSPCPU, the amount of pe-
ripherals being used, the frequency at which the system
is running as well as the loads on the pins.

PNX1300 Series Power Consumption

The first section presents the power consumption for
known applications. The other power related sections
present the maximum power consumption. These maxi-
mum values are obtained with a ‘fake’ application that
turns on all the peripherals and runs intensive compute
on the CPU.

19.71 Power Consumption for

Applications on PNX1300 Series

The Table 1-1 and Table 1-2 present the power con-
sumption for two typical applications:

¢ The DVD playback includes video display using the
VO peripheral and audio streaming using AO periph-
eral. The bitstream is brought into the TM-1300 sys-
tem over the PCI peripheral. The VLD co-processor
is used to perform the bitstream parsing. The bit-
stream is not scrambled therefore the DVDD co-pro-
cessor is not used and it is turned off.

« The MPEG4 application includes video and audio
playback of an enocded CIF stream. The bit stream
is brought into the PNX1300 system over the PCI
peripheral. The Video and Audio subsystems of the
PNX1300 were used to render the video and sound
from the decoded stream into the video monitor and
speakers.

* The H263 video conferencing application includes
the following steps. It captures a CCIR656 video
stream at 30 frames/second using the VI peripheral.
The incoming video stream is downscaled, on the fly,
to SIF resolution by VI. The captured frames are then
downscaled to a QSIF resolution using the ICP co-
processor. The resulting QSIF image is sent over the
PCI bus via the ICP co-processor to a SVGA card
(PC monitor display) and encoded by the DSPCPU.
The resulting bitstream is then decoded by the
DSPCPU and displayed as a SIF image on the same
PC monitor (also using the ICP co-processor). All the
encoding/decoding part is done in the YUV color
space. The display is in the RGB16 color space.
Software is not optimized.

Three main technics may be applied to reduce the ‘Out
of the Box’ power consumption.

« Turn off the unused peripherals. Refer to Section
21.6 on pag e21-2.

¢ Run the system at the required speed, i.e. some
application may not require to run at the full speed
grade of the chip.

¢ Powerdown the system or the DSPCPU each time
the DSPCPU reached the Idle task.

A more detailed description can be found in the applica-
tion note ‘TM-1300 Power Saving Features’ available at
the following website:

http://www.semiconductors.philips.com/trimedia/

Table 1-1. Power Consumption of Example Applications for PNX1300/01/02 (Vdd = 2.5V)

Optimizations

AFTER WITHOUT
APPLICATIONS POWER POWER Unused
. System Speed Idle task power
OPTIMIZATIONS | OPTIMIZATIONS Peripherals Adjustment management
Turned Off
DVD Playback 22w 30W@ 180MHz (2.6 W@ 180 MHz |[26W @ 180 MHz |2.2W @ 180 MHz
H.263 Vconf 1.7wW 29W@ 166 MHz |2.7W @ 166 MHz |19W @ 111 MHz |1.7W @ 111 MHz

Table 1-2. Power Consumption of Example Applications for PNX1311(Vdd = 2.2V)

APPLICATIONS

AFTER
POWER
OPTIMIZATIONS

WITHOUT
POWER
OPTIMIZATIONS

Optimizations

Unused
Peripherals
Turned Off

System Speed
Adjustment

Idle task power
management

MPEG4 (CIF) AIV
Playback

12w

25W @ 166 MHz

21W @ 166 MHz

1.3W @ 70 MHz

1.2W @ 70 MHz

H.263 Vconf

15w

24 W @ 166 MHz

2.2W @ 166 MHz

1.7W @ 111 MHz

15W @ 111 MHz

As previously mentioned the Table 1-1 and Table 1-2
show that the final power consumption for a realistic ap-
plication may be lower than the values reported in the
next section.

Based on these results and the following section, the
power consumption of PNX1300 Series, using an artifi-

cial scenario depicting an extremely demanding applica-
tion, for commonly used speeds, is as follows:

« PNX1300/01/02 is <3.4 W @ 166:133 MHz

¢ PNX1311is<29W @ 166:133 MHz

¢ PNX1302is <4.0 W @ 200:133 MHz

PRELIMINARY SPECIFICATION 1-13

PNX1300/01/02/11 Data Book Philips Semiconductors

1.9.7.2 PNX1300/01/02 DSPCPU Core Current and Power Consumption
PNX1300 PNX1301 PNX1302 PNX1302
143:143 166:133 192:144 200:133
Symbol Current/Notes Pwd| Typ [Max [Pwd| Typ | Max |Pwd | Typ | Max |Pwd | Typ | Max | Units
PNX130x | Ipp 225 | 1125 | 1200 | 250 | 1200 | 1300 | 300 | 1380 | 1475 | 300 | 1400 | 1525 mA
(note 1) [40 125 | 135 | 40 120 | 135 | 40 130 | 135 | 36 125 | 130 | mA
Total Power Dissipation | 0.8 3.2 35 | 0.8 3.4 3.7] 09 3.9 41 | 0.9 4.0 4.2 w
Ipp » DSPCPU Only - 820 | 920 - 900 |1030| - 1030 | 1200 | - 1050 | 1250 | mA
Icc » DSPCPU Only - 55 45 - 50 45 - 55 45 - 55 45 mA
Power DSPCPU Only - 2.2 25 - 24 2.7 - 2.8 3.1 - 2.8 3.3 W
PNX130x | Ipp . Standby - 550 - - 615 - - 720 - - 740 - mA
(note 1,2) | power Standby - 1.5 - - 1.7 - - 1.9 - - 2.0 - w
Ipp » Standby + bpwd - 405 - - 450 - - 525 - - 540 - mA
Power Standby + bpwd - 1.1 - - 1.2 - - 1.4 - - 15 - w
Notes: 1. Consumption for PNX1300/01/02 is organized in several categories. The “Typ” column shows current consumption for a typ-

N

ical application with a CPI (Clocks Per Instruction) of 1.4. The “Max” column provides current consumption for an application
with a CPI of 1.1. The measurements were taken with all the peripheral units turned on (peripherals run on a random data
pattern at the specified frequencies, except for VO which runs at 27 MHz). This “Max” data represnts an application that
heavily uses the DSPCPU and does not reflect a realistic application; it is used to determine peak currents. The “Typ” mea-
surements reflect real applications. The “Pwd” column shows current consumption when Global Powerdown mode is acti-

vated. See Chapter 21, “Power Management.”

. Standby rows indicate current consumption when DSPCPU is maintained under RESET (See Section 11.6.5, “BIU_CTL

Register”), all peripherals turned off (i.e. not enabled) and all peripherals powered down (+ bpwd row).

. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.5V and Vcc set to 3.3V.
. Currents do not scale with frequency unless the CPU to SDRAM ratio is maintained. As an example, the data for CPU to

SDRAM ratio 1:1 for 183:183 MHz can be calculated by using the data from the 143:143 MHz column, and scaling the cur-
rents by a factor of 1.279.

1.9.7.3 PNX1311 DSPCPU Core Current and Power Consumption Details
PNX1311 PNX1311 PNX1311 PNX1311
100:100 143:143 166:166 166:133
Symbol Current/Notes Pwd | Typ | Max |Pwd | Typ | Max |Pwd | Typ | Max [Pwd | Typ | Max | Units
PNX131x | Ipp 129 | 670 | 720 | 185 | 955 |1025| 215 | 1110 (1200 200 | 1032 | 1100 | mA
(note 1) Ty 28 | 87 [100 | 40 | 125 [140 | 46 | 145 | 170 | 37 | 123 | 130 | mA
Total Power Dissipation | 0.4 1.8 1.9 | 05 25 27 | 0.6 2.9 3.2 | 0.6 2.7 2.9 w
Ipp » DSPCPU Only - 490 | 550 - 700 785 - 815 | 915 - 756 880 mA
Icc » DSPCPU Only - 38 31 - 55 45 - 65 55 - 50 45 mA
Power DSPCPU Only - 1.2 1.3 - 1.7 1.9 - 2.0 2.2 - 1.8 21 w
PNX131x | Ipp , Standby - 325 - - 460 - - 535 - - 518 - mA
(note 1,2) ['Power Standby - [08 | - - 11 | - B 1.3 B B 1.3 B W
Ipp , Standby + bpwd - 240 - - 340 - - 395 - - 375 - mA
Power Standby + bpwd - 0.6 - - 0.9 - - 1.0 - - 0.9 - w
Notes: 1. Consumption for PNX1311 is organized in several categories. The “Typ” column shows current consumption for a typical

application with a CPI (Clocks Per Instruction) of 1.4. The “Max” column provides current consumption for an application with
a CPI of 1.1. The measurements were taken with all the peripheral units turned on (peripherals run on a random data pattern
at the specified frequencies, except for VO which runs at 27 MHz). This “Max” data represnts an application that heavily uses
the DSPCPU and does not reflect a realistic application; it is used to determine peak currents. The “Typ” measurements
reflect real applications. The “Pwd” column shows current consumption when Global Powerdown mode is activated. See
Chapter 21, “Power Management.”

2. Standby rows indicate current consumption when DSPCPU is maintained under RESET (See Section 11.6.5, “BIU_CTL

Register”), all peripherals turned off (i.e. not enabled) and all peripherals powered down (+ bpwd row).

3. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.2V and Vcc set to 3.3V.
4. Currents do not scale with frequency unless the CPU to SDRAM ratio is maintained.

1-14

PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
19.74 PNX1300/01/02 Current Consumption For On-Chip Peripherals
PNX1300 PNX1301 PNX1302 PNX1302
143:143 166:133 192:144 200:133

Symbol Current/Notes Pwd | Typ | Max [Pwd | Typ | Max [Pwd | Typ | Max [Pwd | Typ | Max | Units
VO Ipp » funning raw mode 50 28 39 55 29 38 65 16 26 72 27 36 mA
27T MHz - unning raw mode | - 9 |7 | - |12 |17 | - 12 []| -] 12 17| ma
VO Ipp » running raw mode - 23 75 - 33 54 - 30 58 - 47 72 mA
8L MHz F unning rawmode | - | 33 | 51 | - | 37 | 51| - | 3 |52 | - | 3 | 52 | mA
\l Ipp » running raw mode 6 8 18 6 6 18 7 8 18 7 6 18 mA
2T MHz 1 unning raw mode |- 7 | 14 | - 6 | 14 | - 8 | 156 | - 9 | 15 | mA
AO Ipp » stereo 16-bit 2 3 1 1 3 1 1 3 4 5 3 3 mA
44 KHz - stereo 16-bit - 2 1| - 1 1| - 1 1| - 1 1 | mA
Al Ipp , Stereo 16-bit 1 2 2 1 3 3 1 3 2 1 3 3 mA
44 KHz I~ Stereo 16-bit - 1 1| - 1 1] - 1 T | - 1 1 | mA
SPDIF Ipp running PCM audio 2 3 2 2 3 1 3 3 3 4 2 2 mA
48 KHz I~ “running PCM audio | - 3 | 3 | - 2 2 | - 2 2 | - 2 2 | mA
ICP Ipp » mem. block move 61 95 176 | 67 95 170 | 80 105 188 86 106 | 184 | mA

lcc » mem. block move - 28 28 - 27 54 - 30 61 - 29 59 mA
PCI Ipbp » DMA transfer - 37 83 - 34 80 - 32 83 - 40 53 mA
33 MHz 7~ ""DMA transfer ~ | 58 [102| - | 58 |102| - | 58 |104| - | 58 | 82 | mA
VLD Iob 3 - - 5 - - 6 - - 6 - - mA

lec - - - - - - - - - - - - mA
ssl Iob 4 - - 5 - - 6 - - 6 - - mA
10 MHz 1 - - - - - - - - - - - - —
DVDD Ibp 18 - - 21 - - 24 - - 24 - - mA

lec - - - - - - - - - - - - mA
Notes: 1. Pwd. column for peripheral units indicates current savings when block powerdown is activated compared to when it is idle.

N

g

See Chapter 21, “Power Management” for block powerdown activation.
. Typ. column for peripheral units indicates current required when data pattern is random. The Max. column indicates current

ratings when data is switching from high to low level each cycle. Again that Max. column is to show peak current and does
not represent a real application. For both columns the current reported is the current required by the peripheral as well as
the internal bus and MMI to transfer the data to/from the peripheral unit.

. Some currents are not reported due to the difficulty to measure it or because they are not relevant. For example SSI current

is difficult to measure because it heavily involves the DSPCPU and thus makes it almost impossible to separate the current
consumed by the SSI or the DSPCPU.

. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.5V and Vcc set to 3.3V.
. Currents do not scale with frequency if the CPU:SDRAM ratio are different. Same ratio must be used.

PRELIMINARY SPECIFICATION

1-15

PNX1300/01/02/11 Data Book Philips Semiconductors

1.9.75 PNX1311 Current Consumption For On-Chip Peripherals
PNX1311-100:100 | PNX1311-143:143 | PNX1311-166:166 | PNX1311-166:133

Symbol Current/Notes Pwd | Typ | Max [Pwd | Typ | Max [Pwd | Typ | Max [Pwd | Typ | Max | Units
VO IppL » running raw mode | 33 17 23 a7 25 33 56 29 38 48 24 31 mA
21 MHz I unning raw mode |- 8 |12 | - | 12 |17 | - | 14 | 20| - | 25 | 17 | mA
VO IppL » running raw mode | - 14 31 - 20 44 - 23 51 - 33 54 mA
8L MHz F unning rawmode | - | 25 | 36 | - | 36 | 52 | - | 42 | 60 | - | 37 | 51 | mA
\ IppL » funning raw mode | 3 5 8 5 7 11 6 8 13 5 7 15 mA
27T MHz - unning raw mode | - 6 | 10| - 9 |15 - | 10 | 17| - 8 | 15 | mA
AO IppL » Stereo 16-bit 4 2 1 6 3 2 7 3 2 1 2 2 | mA
44 KHz - stereo 16-bit - 1 T | - 1 1| - 1 1| - 1 1 | mA
Al IopL » Stereo 16-bit 1 1 1 1 2 2 1 2 2 1 2 3 | mA
44 KHz - stereo 16-bit - 1 T | - 1 1| - 1 1| - 1 1 | mA
SPDIF IppL running PCM audio | 2 2 1 3 3 2 3 3 2 2 2 2 mA
48 KHz - “running PCM audio | - 1 1| - 2 2 | - 2 2 | - 2 2 | mA
ICP IppL » mem. block move | 40 55 101 | 57 79 144 | 66 92 167 60 76 136 | mA

lcc » mem. block move - 19 38 - 27 55 - 31 64 - 26 54 mA
PCI IppL » DMA transfer - 17 36 - 25 51 - 29 59 - 20 50 mA
33 MHZ I~ ""DMA transfer T |41 |57 | - | 58 | 82| - | 67 | 9 | - | 45 | 81 | mA
VLD IbbL 3 - - 4 - - 5 - - 4 - - mA

lec - - - - - - - - - - - - mA
Ssi IboL 2 - - 3 - - 3 - - 4 - - [mA
10 MHz 5= - - - - - - - - - - - - —
DVDD | IppL 11 - - 16 - - 19 - - 18 - - mA

lec - - - - - - - - - - - - mA
Notes: 1. The “Pwd” column for peripheral units indicates current savings when block powerdown is activated, compared to when it is

N

idle. See Chapter 21, “Power Management” for block powerdown activation.

. The “Typ” column for peripheral units indicates current required when data pattern is random. The “Max” column indicates

current ratings when data is switching from high to low level each cycle. Again that “Max” column is to show peak current
and does not represent a real application. For both columns the current reported is the current required by the peripheral as
well as the internal bus and MMI to transfer the data to/from the peripheral unit.

. Some currents are not reported due to the difficulty to measure it or because they are not relevant. For example SSI current

is difficult to measure because it heavily involves the DSPCPU and thus makes it almost impossible to separate the current
consumed by the SSI or the DSPCPU.

. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.2V and Vcc set to 3.3V.
. Currents do not scale with frequency if the CPU:SDRAM ratio are different. Same ratio must be used.

1-16

PRELIMINARY SPECIFICATION

Philips Semiconductors

Pin List

1.9.7.6 STRG3, STRG5 type I/O circuit
PNX1300/01/02/11
Symbol Parameter Condition/Notes Min. | Nominal Max Units
Von Output HIGH voltage | ! ;- = 16.0 mA 0.9V \
VoL Output LOW voltage lout=-16.0 mA 0.1Vee \Y
ZOH Output AC impedance | HIGH level output state 11 ohm
ZOL Output AC impedance | LOW level output state 11 ohm
ty Output rise time Test load of Figure 1-1. 2.0 ns
t, Output fall time Test load of Figure 1-1. 2.0 ns
1.9.7.7 NORMS3 type I/O circuit
PNX1300/01/02/11
Symbol Parameter Condition/Notes Min. | Nominal | Max. Units
Von Output HIGH voltage 'out=8.0 MA 0.9V \
VoL Output LOW voltage louT=-8.0MA 0.1V \
ZOH Output AC impedance | HIGH level output state 23 ohm
ZOL Output AC impedance | LOW level output state 23 ohm
ty Output rise time Test load of Figure 1-2. 4.0 ns
t, Output fall time Test load of Figure 1-2. 4.0 ns
1.9.7.8 WEAKS type I/O circuit
PNX1300/01/02/11
Symbol Parameter Condition/Notes Min. | Nominal | Max. Units
Von Output HIGH voltage 'ouT=6.0 MA 0.9V \
VoL Output LOW voltage lout=-6.0 MA 0.1V \
ZOH Output AC impedance | HIGH level output state 33 ohm
ZOL Output AC impedance | LOW level output state 33 ohm
ty Output rise time Test load of Figure 1-3. 4.0 ns
tr Output fall time Test load of Figure 1-3. 4.0 ns
1.9.7.9 1ICOD (I%c) type /O circuit
Symbol Parameter Condition/Notes Min. Nominal Max. Units
VIL-IIC Input LOW voltage -0.5 1.0 \%
VIH-IIC Input HIGH voltage VX is 3.3V or 5V depending 2.3 VX+0.5 \%
on VREF_PERIPH value
VHYS Input Schmitt trigger hysteresis 0.25
VoL Output LOW voltage louT = -6.0 MA 0.6
t Output fall time 10 - 400 pF load 1.5 250 ns
PRELIMINARY SPECIFICATION 1-17

PNX1300/01/02/11 Data Book Philips Semiconductors

1.9.7.10 SDRAM interface timing for PNX1300/01/02/11 speed grades.

PNX1300 [PNX1301 | PNX1301 | PNX1311 | PNX1302 N
143 166 180 166 200 o
t
Symbol Parameter Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Units g
fspram | MM_CLK frequency 143 166 166 166 183 | MHz | 1
Tcs Skew between MM_CLKO, CLK1 0.05 0.05 0.05 0.05 005 ns |2
Tep Propagation delay of data, address, control 4.7 4.2 4.2 4.2 3.7 ns |3
Ton Output hold time of data, address and control | 1.5 15 15 15 1.5 ns |3
Tsu Input data setup time 0 0 0 0 0 ns |4
TiH Input data hold time 20 15 15 15 15 ns |4

Notes: 1. For best high speed SDRAM operation, 50-ohm matched PCB traces are recommended for all MM_xxx signals.

Use 27-33 ohm series terminator resistors close to PNX1300/01/02/11 in the MM_CLKO and MM_CLK1 line only.

2. Equal load circuit. MM_CLKO and MM_CLK1 are matched output buffers.
3. The center of the two rising edges on MM_CLKO0, MM_CLK1 are used as the clock reference point.
Propagation delay guarantee is defined from 50% point of clock edge to 50% level on D/A/C.
Output hold time guarantee is defined from 50% point of clock edge to 50% level on D/A/C.
4. MM_CLKO is used as a reference clock.
Input setup time requirement is defined as data value 50% complete to 50% level on clock.
Input hold time requirement is defined as minimum time from 50% level on clock to 50% change on data.
1.9.7.11 PCI Bus timing
The following specifications meet the PCI Specifications, Rev. 2.1 for 33-MHz bus operation.

Symbol Parameter Min. Max Units Notes
Tval-pCI (Bus) Clk to signal valid delay, bused signals 2 11 ns 1,23
Tval-pCI (ptp) Clk to signal valid delay, point-to-point signals 2 12 ns 1,2,3
Ton-pCI Float to active delay 2 ns 1
Toft.pci Active to float delay 28 ns 1,7
Tsu-pcl Input setup time to CLK - bused signals 7 ns 3,4
Tsu-Pc (ptp) Input setup time to CLK - point-to-point signals 12 ns 3,4
Th-pcl Input hold time from CLK 0.21 ns 4
Tist-pcl Reset active time after power stable 1 ms 5
Tist-clk-PCI Reset active time after CLK stable 100 us 5
Tist-off-PCI Reset active to output float delay 40 ns 56,7

1. PCI Clock skew between two PCI devices must be lower than 1.8ns instead of the 2 ns as specified in PCI
2.1 specification

Notes: 1.
2.

~No U AW

See the timing measurement conditions in Figure 1-4.
Minimum times are measured at the package pin with the load circuit shown in Figure 1-8. Maximum times are measured
with the load circuit shown in Figure 1-6 and Figure 1-7.

. REG# and GNT# are point-to-point signals and have different input setup times. All other signals are bused.

See the timing measurement conditions in Figure 1-5.
RST# is asserted and de-asserted asynchronously with respect to CLK.

. All output drivers are floated when RST# is active.
. For the purpose of Active/Float timing measurements, the Hi-Z or‘off’ state is defined to be when the total current delivered

through the component pin is less than or equal to the leakage current specification.

1-18

PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
1.9.7.12 JTAG /O timing
Symbol Parameter Min. Max Units Notes
fyTAG-cLK JTAG clock frequency 20 MHz
Tek-TDo JTAG_TCK to JTAG_TDO valid delay 2 10 ns 1
Tsu-Tck Input setup time to JTAG_TCK 3 ns 2
Th-tek Input hold time from JTAG_TCK 7 ns 2
Notes: 1. See the timing measurement conditions in Figure 1-10.
2. See the timing measurement conditions in Figure 1-9.
1.9.7.13 12C /O timing
Symbol Parameter Min Max Units Notes
fscL SCL clock frequency 400 kHz 1
Teur Bus free time 1 us 2
Tsu-sTA Start condition set up time 1 us 3
Th-sTA Start condition hold time 1 us 3
Tiow SCL LOW time 1 us 1
THIGH SCL HIGH time 1 us 1
T¢ SCL and SDA fall time (Cb = 10-400 pF, from Vi c to V) ic) 20+0.1Cb 250 ns 1
Tsu-spa Data setup time 100 ns 4
Th-spa Data hold time 0 ns 4
Tav-spa SCL LOW to data out valid 0.5 us 5
Tav-sTO SCL HIGH to data out 1 ns 5
Notes: 1. See the timing measurement conditions in Figure 1-11.
2. See the timing measurement conditions in Figure 1-12.
3. See the timing measurement conditions in Figure 1-13.
4. See the timing measurement conditions in Figure 1-14.
5. See the timing measurement conditions in Figure 1-15.
1.9.7.14 Video In I/O Timing
Symbol Parameter Min. Max Units Notes
fulcLk Video In clock frequency 81 MHz
Tsu-cLk Input setup time to VI_CLK 2 ns 1
Th-cLk Input hold time from VI_CLK 2 ns 1
Notes: 1. See the timing measurement conditions in Figure 1-16.
1.9.7.15 Video Out I/O Timing
Symbol Parameter Min Max Units Notes
fvo-cLk Video Out clock frequency 81 MHz
TcLk-Dv VO_CLK to VO_DATA (or VO_IO*) out 3 7.5 ns 1,3
TcLk-Dv VO_CLK to VO_DATA (or VO_IO*) out 3 7.5 ns 1,4
Tsu-cLK VO_IO* setup time to VO_CLK 10 ns 2
Th-cLk VO_IO* hold time from VO_CLK 3 ns 2
Notes: 1. See the timing measurement conditions in Figure 1-17.

2. See the timing measurement conditions in Figure 1-18.
3. CLKOUT asserted, i.e. the VO unit is the source of VO_CLK
4. CLKOUT negated, i.e. the external world is the source of VO_CLK

PRELIMINARY SPECIFICATION 1-19

PNX1300/01/02/11 Data Book

Philips Semiconductors

1.9.7.16 Audioln I/O timing

Symbol Parameter Min Max Units Notes
fal-scK Audio In Al_SCK clock frequency 22 MHz
Tsu-sck Input setup time to Al_SCK 3 ns 1,2
Th-sck Input hold time from Al_SCK 2 ns 1,2
Tsck-ws Al_SCK to AI_WS 10 ns 3

Notes: 1. See the timing measurement conditions in Figure 1-19.

2. The timing measurements are done with respect to the clock edge according to CLOCK_EDGE
3. SER_MASTER asserted, i.e. Audio In is the source of AI_WS. See the timing measurement condition in Figure 1-20.

1.9.7.17 Audio Out I/O timing

Symbol Parameter Min Max Units Notes
fao-sck Audio Out AO_SCK clock frequency 22 MHz
Tsck-pv AO_SCK to AO_SDx valid 2 12 ns 134
Tsck-pv AO_SCK to AO_SDx valid 2 12 ns 135
Tsu-sck Input setup time to AO_SCK 4 ns 235
Th-sck Input hold time from AO_SCK 2 ns 2,35
Tsck-ws AO_SCK to AO_WS 10 ns 3,46

Notes: 1. See the timing measurement conditions in Figure 1-21.

2. See the timing measurement conditions in Figure 1-23.

3. The timing measurements are done with respect to the AO_SCK clock edge according to CLOCK_EDGE

4. PNX1300/01/02/11 is the serial interface master, i.e. AO_SCK, AO_WS are outputs

5. PNX1300/01/02/11 is serial interface slave, i.e. AO_SCK, AO_WS are inputs

6. See the timing measurement conditions in Figure 1-22.
1.9.7.18 SSI I/O timing

Symbol Parameter Min Max Units Notes

fssicLk SSI_CLK clock frequency 20 MHz 1
TcLk-pv SSI_CLK to data valid 2 12 ns 2
Tsu-cLk Input setup time to SSI_CLK 3 ns 3
Th-cLk Input hold time from SSI_CLK 2 ns 3

Notes: 1. Interrupt latency limits SSI to a practical use at a bit rate of 1.5 Mbit/sec.

2. See the timing measurement conditions in Figure 1-24.
3. See the timing measurement conditions in Figure 1-25.

1-20

PRELIMINARY SPECIFICATION

Pin List

Philips Semiconductors
PNX1300 pin rise/fall test point V_th
2" true length CLK Vil
Output 30-ohm -
R A A RS- el
1 1 12 pF H
= = L R t
= Input V_max
— Vi
Figure 1-1. STRG3, STRGS5 test load circuit Figure 1-5. PCI Input Timing Measurement Conditions
. . . pin
PNX1300 pin rise/fall test point
2" true length \ |<—>| 1/2 in. max
Outout P . Output
utpu i W
et | > _soom_}in Buffer oor
T T 30 pF 25Q
Figure 1-2. NORM3 test load circuit Figure 1-6. PCI T, 5(max) Rising Edge
. . . pin
PNX1300 pin rise/fall test point
2" true length \ |<—>| 1/2 in. max
output \ P Output
utpu i W
e > oo} in Buffer Vo
L L 15 pF
Figure 1-3. WEAKS test load circuit Figure 1-7. PCI T, 5 (max) Falling Edge
pin
\ 1/2 in. max |
Vce

V_th

Output
Buffer

st N\

CLK
T_fval
Qutput V_tfall

Delay

Tri-State
Output
—> T _on

Vv tl

Figure 1-8. PCI T, 5(min) and Slew Rate

Delay
T_rval
Output ;“ V_trise
TCK \
Tsu_Tck
Th Tck

-

valid

TDI, TMS

T_off
|
Figure 1-9. JTAG Input Timing

ditions

Figure 1-4. PCI Output Timing Measurement Con-

PRELIMINARY SPECIFICATION

1-21

PNX1300/01/02/11 Data Book

Philips Semiconductors

TCK /

Teik_TDO

TDO valid ><

SCL

Tav_soa Tav_sTO

SDA valid

Figure 1-10. JTAG Output Timing

Figure 1-15. I2C I/O Timing

TheH — Tiow _

SCL / — — B o LT
Tt —p| T,

VI_CLK S

Tsu_cLk Th_cik
VI_DATA, VI_IO
Figure 1-11. 12C I/O Timing Figure 1-16. Videol n I/O Timing
se._ voclk
Treur Teik_pv
SDA — VO_DATA valid

Figure 1-12. I°C I/O Timing

Figure 1-17. Video Out I/O Timing

SCL /

Tsu_sTA

SDA

VO_CLK s

Tsu_cLk

Th_cLk

VO 10 valid

Figure 1-13. I2C I/O Timing

Figure 1-18. Video Out I/O Timing

SCL f\

Tsu_spa

Th_spa

SDA

Al_SCK _/—\

Tsu_SCK |a—mla—| T, 5o

AI_SD, AI_WS valid

Figure 1-14. I2C I/O Timing

Figure 1-19. Audio In I/O Timing

1-22 PRELIMINARY SPECIFICATION

Philips Semiconductors

Pin List

AlLSCK / \ AO_SCK o

Tsck_ws -

su_SCK Th_SCK
Al_WS valid
AO_WS valid
Figure 1-20. Audio In I/O Timing Figure 1-23. Audio Out I/O Timing
AO_SCK _/—\ SSI_CLK _/—
Tsck_pv Teik_pv
AO_SDx valid SSI /O valid

Figure 1-21. Audio Out I/O Timing

Figure 1-24. SSI /0O Timing

AO_SCK _/—\

| Tsck ws

AO_WS

valid

ssi.Clk N\

Tsu_cLk - T\ cik

SSI 10 valid

Figure 1-22. Audio Out I/O Timing

Figure 1-25. SSI I/O Timing

PRELIMINARY SPECIFICATION

1-23

PNX1300/01/02/11 Data Book Philips Semiconductors

1-24 PRELIMINARY SPECIFICATION

Overview

Chapter 2

21 INTRODUCTION

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

PNX1300 is a successor to the TM-1300, TM-1100 and
TM-1000 media processors. For those familiar with the
TM-1300, the new features specific to the PNX1300 are
summarized in Section 2.6. For those familiar with the
TM-1100, the new features specific to the PNX1300 are
summarized in Section 2.7. For those familiar with the
TM-1000, new features for the PNX1300 are summa-
rized in Section 2.8.

2.2 PNX1300 FUNDAMENTALS

PNX1300 is a media processor for high-performance
multimedia applications that deal with high-quality video
and audio. These applications can range from low-cost,
dedicated systems such as video phones, video editing,
digital television, security systems or set-top boxesto re-
programmable, multipurpose plug-in cards for personal
computers. PNX1300 easily implements popular multi-
media standards such as MPEG-1 and MPEG-2, but its
orientation around a powerful general-purpose CPU
(called the DSPCPU) makes it capable of implementing
a variety of multimedia algorithms, both open and propri-
etary. PNX1300 is also easily configured in multiple pro-
cessor configurations for very high-end applications.

More than just an integrated microprocessor with unusu-
al peripherals, the PNX1300 is a fluid computer system
controlled by a small real-time OS kernel running on a
very-long instruction word (VLIW) processor core.
PNX1300 contains a DSPCPU, a high-bandwidth inter-
nal bus, and internal bus-mastering DMA peripherals.

Software compatibility between current and future Trime-
dia processor family members is at the source-code and
library API level; binary compatibility between family
members is not guaranteed.

Defining software compatibility at the source-code level
gives Philips the freedom to strike the optimum balance
between cost and performance for all chips in the family.
A powerful compiler and software development environ-
ment ensure that programmers never need to resort to
non-portable assembler programming. Programmers
use the library APIs and multimedia operations from C
and C++ source code.

by Gert Slavenburg

PNX1300 is designed both for use as an accelerator in a
PC environment or as the sole CPU in cost-effective
standalone systems. In standalone system applications,
the PNX1300 external bus allows for glueless connection
of 8-bit wide ROM, EEPROM, or Flash memory for code
storage. The external bus also allows intermixing of
PCI2.1 master/slave peripherals and 8-bit simple periph-
erals, such as UARTSs and other 8-bit microprocessor pe-
ripherals. This powerful external bus architecture gives
system designers a variety of options to configure low-
cost, high-performance system solutions.

Because it is based on a general-purpose CPU,
PNX1300 can also serve as a multifunctional PC en-
hancement vehicle. Typically, a PC must deal with multi
standard video and audio streams; and applications re-
quire both decompression and compression. While the
CPU chips used in PCs are becoming capable of low-
resolution, real-time video decompression, high-quality
decompression—not to mention compression—of stu-
dio-resolution video is still out of reach. Further, users
expect their systems to handle live video and audio with-
out sacrificing system responsiveness.

PNX1300 enhances a PC system by providing real-time
multimedia with the advantages of a special-purpose,
embedded solution—low cost and chip count—and the
advantages of a general-purpose processor—repro-
grammability. For PC applications, PNX1300 far sur-
passes the capabilities of fixed-function multimedia
chips.

Future media processor family members will have differ-
ent sets of interfaces appropriate for their intended use.

2.3 PNX1300 CHIP OVERVIEW

Key features of PNX1300 include:

« A very powerful, general-purpose VLIW processor
core (the DSPCPU) that coordinates all on-chip
activities. In addition to implementing the non-trivial
parts of multimedia algorithms, the DSPCPU runs a
small real-time operating system driven by interrupts
from the other units.

* Independent DMA-driven multimedia I/O units that
properly format data to make software media pro-
cessing efficient.

¢« DMA-driven multimedia coprocessors that operate
independently and in parallel with the DSPCPU to
perform operations specific to important multimedia
algorithms.

PRELIMINARY SPECIFICATION 2-1

PNX1300/01/02/11 Data Book

Philips Semiconductors

* A high-performance bus and memory system that
provide communication between PNX1300’s pro-
cessing units.

A flexible external bus interface.

Figure 2-1 shows a PNX1300 block diagram. The bulk of
a PNX1300 system consists of the PNX1300 micropro-
cessor itself, external synchronous DRAM (SDRAM),
and the external circuitry needed to interface toincoming
and/or outgoing video and audio data streams and com-
munication lines. PNX1300's external peripheral bus can
gluelessly interface to PC! 2.1 components and/or 8-bit
microprocessor peripherals.

Figure 2-2 shows a possible minimally configured
PNX1300 system. A video input stream might come di-
rectly from a CCIR 656-compliant video camera chip in
YUV 4:2:2 format through a glueless interface in this
case. An analog camera can be connected via a CCIR
656 interface chip (such as the Philips SAA7113H).
PNX1300 outputs a CCIR656 video stream to drive a
dedicated video monitor. Stereo audio input and up to 8-
channel audio output require only low-cost external ADC
and DAC. The operation of the video and audio interface
units is highly customizable through programmable pa-
rameters.

2Mx32 SDRAM

PNX1300

CCIR656
digital video

CCIR656

> > dig. video

2-8ch
audio out

stereo
audio in

—{DACST

JTAG <> modem
1A
ROM
} \

PCIl and 8-bit peripheral bus

Figure 2-2. PNX1300 system connections. A minimal
PNX1300 requires few supporting components.

The glueless PCI interface allows the PNX1300 to dis-
play video in a host PC’s video card. The Image Copro-
cessor (ICP) provides display support for live video input
an arbitrary number of arbitrarily overlapped windows.

SDRAM 32-bitdata
up to 572 MB/sec
|
PNX1300 Main Memory Huffman decoder
Interface Slice-at-a-time
MPEG-1 & 2
CCIR656 dig. video . VLD
YUV 4:2:2 P Video In Coprocessor
up to 81 MHz (40 Mpix/sec)
Stereo digital audio .] - . CCIR656 digital video
8 and 16-bit data — ™| Audio In 1= Video Out YUV 4:2:2
12s pC, up to 22 MHz Al_SCK up to 81 MHz (40 Mpix/sec)
2/4/6/8 ch. digital audio . .
16 and 32-bit data] Audio Out |<f=> Timers
12S DC, up to 22 MHz AO_SCK
IECO58 Synchronous Analog modem or ISDN
up t0 40 Mbisec ®— SPDIFOut |« ~ Serial - (nECIT
Interface
12C bus to
camera, otc, ¥ 1°C Interface |w»] == DVDD
Down & up scaling
2K YUV - RGB
ry |— Image 50 Mpix/sec
VLIW Coprocessor
CPU 16K
D$ *
External bus
PCI-XIO Interface ‘ ~PC12.1 (32 bits, 33-MHz)
[+ glueless 24A/8D slaves
- I -

Figure 2-1. PNX1300 block diagram.

2-2 PRELIMINARY SPECIFICATION

Philips Semiconductors

Overview

Finally, the Synchronous Serial Interface (SSI) requires
only an external ISDN or analog modem front-end chip
and phone line interface to provide remote communica-
tion support. It can be used to connect PNX1300-based
systems for video phone or videoconferencing applica-
tions, or it can be used for general-purpose data commu-
nication in PC systems.

The PNX1300 JTAG port allows a debugger on a host
system to access and control the state of a PNX1300 in
a target system. It also implements 1149.1 boundary
scan functionality.

24 BRIEF EXAMPLES OF OPERATION

The key to understanding PNX1300 operation is observ-
ing that the DSPCPU and peripherals are time-shared
and that communication between units is through
SDRAM memory. The DSPCPU switches from one task
to the next; first it decompresses a video frame, then it
decompresses a slice of the audio stream, then back to
video, etc. As necessary, the DSPCPU issues com-
mands to the peripheral function units to orchestrate their
operation.

The DSPCPU can enlist the ICP and other coprocessors
to help with some of the straightforward, tedious tasks
associated with video processing. The ICP is very well
suited for arbitrary size horizontal and vertical video re-
sizing and color space conversion.

The DSPCPU can enlist the input/output peripherals to
autonomously receive or transmit digital video and audio
data with minimal CPU supervision. The 1/O units have
been designed to interface to the outside world through
industry standard audio and video interfaces, while deliv-
ering or taking data in memory in formats suitable for
software processing.

241

An example PNX1300 implementation is as a video-de-
compression engine on a PCl card in a PC. In this case,
the PC does not need to know the PNX1300 has a pow-
erful, general-purpose CPU; rather, the PC just treats the
hardware on the PCI card as a ‘black-box’ engine.

Video Decompression in a PC

Video decompression begins when the PC operating
system hands the PNX1300 a pointer to compressed vid-
eo data in the PC’s memory (the details of the communi-
cation protocol are handled by the software driver in-
stalled in the PC'’s operating system).

The DSPCPU fetches data from the compressed video
stream via the PCI bus, decompresses frames from the
video stream, and places them into local SDRAM. De-
compression may be aided by the VLD (variable-length
decoder) coprocessor unit, which implements Huffman
decoding and is controlled by the DSPCPU.

When a frame is ready for display, the DSPCPU gives
the ICP a display command. The ICP then autonomously
fetches the decompressed frame data from SDRAM and
transfers it over the PCI bus to the frame buffer in the

PC's video display card. Alternately, video can be sent to
the graphics card using the VO unit.

242

Another typical application for PNX1300 is in video com-
pression. In this case, uncompressed video is usually
supplied directly to the PNX1300 system via the Video In
(V1) unit. A camera chip connected directly to the VI unit
supplies YUV data in 8-bit, 4:2:2 format. The VI unit sam-
ples the data from the camera chip and demultiplexes
the raw video to SDRAM in three separate areas, one
eachforY, U,and V.

When a complete video frame has been read from the
camera chip by the VI unit, it interrupts the DSPCPU. The
DSPCPU compresses the video data in software (using
a set of powerful data-parallel multimedia operations)
and writes the compressed data to a separate area of
SDRAM.

The compressed video data can now be transmitted or
stored in any of several ways. It can be sent to a host
system over the PCI bus for archival on local mass stor-

age, or the host can transfer the compressed video over
a network. The data can also be sent to a remote system
using the modem/ISDN interface to create, for example,

a video phone or videoconferencing system.

Video Compression

Since the powerful, general-purpose DSPCPU is avail-
able, the compressed data can be encrypted before be-
ing transferred for security.

25 INTRODUCTION TO PNX1300 BLOCKS

The remainder of this chapter provides a brief introduc-
tion to the internal components of PNX1300.

251

The internal bus (or data highway) connects all internal
blocks together and provides access to internal control/
status registers of each block, external SDRAM, and the
external bus peripheral chips. The internal bus consists
of separate 32-bit data and address buses. Transactions
on the bus use a block-transfer protocol. On-chip periph-
eral units and coprocessors can be masters or slaves on
the bus.

Access to the internal bus is controlled by a central arbi-
ter, which has a request line from each potential bus
master. The arbiter is programmable so that the arbitra-
tion algorithm can be tailored for different applications.
Peripheral units make requests to the arbiter for bus ac-
cess and, depending on the arbitration mode, bus band-
width is allocated to the units in different amounts. Each
mode allocates bandwidth differently, but each mode
guarantees each unit a minimum bandwidth and maxi-
mum service latency. All unused bandwidth is allocated
to the DSPCPU.

The bus allocation mechanism is one of the features of
PNX1300 that makes it a true real-time system instead of
just a highly integrated microprocessor with unusual pe-
ripherals.

Internal ‘Data Highway’ Bus

PRELIMINARY SPECIFICATION 2-3

PNX1300/01/02/11 Data Book

Philips Semiconductors

25.2

The heart of PNX1300 is a powerful 32-bit DSPCPU
core. The DSPCPU implements a 32-bit linear address
space and 128, fully general-purpose 32-bit registers.
The registers are not separated into banks; any opera-
tion can use any register for any operand.

VLIW Processor Core

The PNX1300 core uses a VLIW instruction-set architec-
ture and is fully general-purpose. The VLIW instruction
length allows five simultaneous operations to be issued
every clock cycle. These operations can target any five
of the 27 functional units in the DSPCPU, including inte-
ger and floating-point arithmetic units and data-parallel
multimedia operation units.

Although the processor core runs a real-time operating
system to coordinate all activities in the PNX1300 sys-
tem, the core is not intended for true general-purpose
computer use. For example, the PNX1300 processor
core does not implement demand-paged virtual memory,
memory address translation, or 64-bit floating point - all
essential features in a general-purpose computer sys-
tem.

PNX1300 uses a VLIW architecture to maximize proces-
sor throughput at the lowest possible cost. VLIW archi-

tectures have performance exceeding that of supersca-
lar general-purpose CPUs without the cost and
complexity of a superscalar CPU implementation. The
hardware saved by eliminating superscalar logic reduces
cost and allows the integration of multimedia-specific
features that enhance the power of the processor core.

The PNX1300 operation set includes all traditional micro-
processor operations. In addition, multimedia operations
are included that dramatically accelerate standard video
and audio compression and decompression algorithms.
As just one of the five operations issued in a single
PNX1300 instruction, a single ‘custom’ or ‘media’ opera-
tion can implement up to 11 traditional microprocessor
operations. These multimedia operations combined with
the VLIW architecture result in tremendous throughput
for multimedia applications.

The DSPCPU core is supported by separate 16-KB data
and 32-KB instruction caches. The data cache is dual-
ported to allow two simultaneous accesses; both caches
are 8-way set-associative with a 64-byte block size.

253 Video In Unit

The Video In (VI) unitinterfaces directly to any CCIR 601/
656-compliant device that outputs 8-bit parallel, 4:2:2
YUV time-multiplexed data. Such devices include direct
digital camera systems, which can connect gluelessly to
PNX1300 or through the standard CCIR 656 connector
with only the addition of ECL level converters. A single
chip external device can be used to convert to/from serial
D1 professional video. Non-CCIR-compliant devices can
use a digital video decoder chip, such as the Philips
SAAT7113H, to interface to PNX1300.

The VI unit demultiplexes the captured YUV data before
writing it into local PNX1300 SDRAM. Separate planar
data structures are maintained for Y, U, and V.

The VI unit can be programmed to perform on-the-fly
horizontal resolution subsampling by a factor of two if
needed. Many camera systems capture a 640-pixel/line
or 720-pixel/line image. With subsampling, direct conver-
sion to a 320-pixel/line or a 360-pixel/line image can be
performed with no DSPCPU intervention. Performing this
function during video input reduces initial storage and
bus bandwidth requirements for applications requiring
reduced resolution.

254 Enhanced Video Out Unit

The Enhanced Video Out (EVO) unit essentially per-
forms the inverse function of the VI unit. EVO generates
an 8-bit, CCIR656 digital video data stream that contains
a composited video and graphics overlay image. The vid-
eo image is taken from separate Y, U, and V planar data
structures in SDRAM. The graphics overlay is taken from
a pixel-packed YUV data structure in SDRAM. Compos-
iting allows both alpha-blending and chroma keying.

The EVO unit can also upscale the video image horizon-
tally by a factor of two to convert from CIF/SIF to CCIR
601 resolution. The overlay image, if enabled, is always
in full-pixel resolution.

The EVO unit is capable of pixel emission rates up to 40
Mpix/sec and allows full programming ofa horizontal and
vertical framef/field structure. Itis thus capable of refresh-
ing both interlaced and non-interlaced (‘two f,,’) video dis-
plays with 4:3 or 16:9 or other aspect ratios.

The sample rate for EVO unit pixels is independently and
dynamically programmable. The high-quality, on-chip
sample clock generator circuit allows the programmer
subtle control over the sampling frequency so that audio
and video synchronization can be achieved in any sys-
tem configuration. When changing the sample frequen-
cy, the instantaneous phase does not change, which al-
lows sample frequency manipulation without introducing
audio or video distortion.

255

The ICP off-loads common image scaling or filtering
tasks from the DSPCPU. Although these tasks can be
easily performed by the DSPCPU, they are a poor use of
the relatively expensive CPU resource. When performed
in parallel by the ICP, these tasks are performed effi-
ciently by simple hardware, which allows the DSPCPU to
continue with more complex tasks.

Image Coprocessor

The ICP can operate as either a memory-to-memory or a
memory-to-PCI coprocessor device.

In memory-to-memory mode, the ICP can perform either
horizontal or vertical image filtering and resizing. A high
quality algorithm is used (5-tap polyphase filter in each
direction). Filtering or scaling is done in either the hori-
zontal or vertical direction in one pass. Two invocations
of the ICP are required to filter or resize in both direc-
tions.

In memory-to-PCIl mode, the ICP can perform horizontal
resizing followed by color-space conversion. For exam-
ple, assume an n x m pixel array is to be displayed in a

2-4 PRELIMINARY SPECIFICATION

Philips Semiconductors

Overview

PC Screen

5 Cenda Da]
Fie _Ear

In SDRAM
Image 2
gl
Y
pr Image 1
U
Y
o
\%
U
\%

1111111100000
1111113000000
1311533100000

Image 1 Image 2 [111

Figure 2-3. ICP - Windows on the PC screen and data structures in SDRAM for two live video windows.

window on the PC video screen while the PC is running
a graphical user interface. The first step (if necessary)
would use the ICP in memory-to-memory mode to per-
form a vertical resizing. The second step would use the
ICP in memory-to-PCl mode to perform horizontal resiz-
ing and optional colorspace conversion from YUV to
RGB.

While sending the final, resampled and converted pixels
over the PCI bus to the video frame buffer, the ICP uses
a full, per-pixel occlusion bit mask—accessed in destina-
tion coordinates—to determine which pixels are actually
written to the graphics card frame buffer for display. Con-
ditioning the transfer with the bit mask allows PNX1300
to accommodate an arbitrary arrangement of overlap-
ping windows on the PC video screen.

Figure 2-3illustrates a possible display situation and the
data structures in SDRAM that support ICP operation.
On the left, the PC video screen has four overlapping
windows. Two, Image 1 and Image 2, are being used to
display video generated by PNX1300. The right side
shows a conceptual view of SDRAM contents. Two data
structures are present, one for Image 1 and the other for
Image 2. Figure 2-3 represents a point in time during
which the ICP is displaying Image 2.

When the ICP is displaying an image (i.e., copying it from
SDRAM to a frame buffer), it maintains four pointers to
the SDRAM data structures. Three pointers locate the Y,
U, and V data arrays, the fourth locates the per-pixel oc-
clusion bit map. The Y, U, and V arrays are indexed by
source coordinates while the occlusion bit map is ac-
cessed with screen coordinates.

As the ICP generates pixels for display, it performs hori-
zontal scaling and colorspace conversion. The final RGB

pixel value is then copied to the destination address in
the screen’s frame buffer only if the corresponding bit in
the occlusion bit map is a ‘1.

As shown in the conceptual diagram, the occlusion bit
map has a pattern of 1s and Os corresponding to the
shape of the visible area of the destination window in the
frame buffer. When the arrangement of windows on the
PC screen changes, modifications to the occlusion bit
map is performed by PNX1300 or host resident software.

It is important to note that there is no preset limit on the
number and sizes of windows that can be handled by the
ICP. The only limit is the available bandwidth. Thus, the

ICP can handle a few large windows or many small win-
dows. The ICP can sustain a transfer rate of 50 megapix-
els per second, which is more than enough to saturate
PCI when transferring images to video frame buffers.

256 Variable-Length Decoder (VLD)

The variable-length decoder (VLD) relieves the DSPCPU
of decoding Huffman-encoded video data streams. It can
be used to help decode high bitrate MPEG-1 and MPEG-
2 video streams. The lower bitrate of videoconferencing
can be adequately handled by DSPCPU software with-
out coprocessor.

The VLD is a memory-to-memory coprocessor. The
DSPCPU hands the VLD a pointer to a Huffman-encod-
ed bit stream, and the VLD produces a tokenized bit
stream that is very convenient for the PNX1300 image
decompression software to use. The format of the output
token stream is optimized for the MPEG-2 decompres-
sion software so that communication between the
DSPCPU and VLD is minimized.

PRELIMINARY SPECIFICATION 2-5

PNX1300/01/02/11 Data Book

Philips Semiconductors

257 Audio In and Audio Out Units

The Audio In (Al) and Audio Out (AO) units are similar to
the video units. They connect to most serial ADC and
DAC chips, and are programmable enough to handle
most serial bit protocols. These units can transfer MSB
or LSB first and left or right channel first.

The audio sampling clock is driven by PNX1300 and is
software programmable within a wide range. Like the VO
unit, Al and AO sample rates are separately and dynam-
ically programmable. The high-quality on-chip sample
clock generator circuits allows the programmer subtle
control over the sampling frequency so that audio and
video synchronization can be achieved in any system
configuration. When changing the sample frequency, the
instantaneous phase does not change, which allows
sample frequency manipulation without introducing au-
dio or video distortion.

As with the video units, the audio-in and audio-out units
buffer incoming and outgoing audio data in SDRAM. The
audio-in unit buffers samples in either 8- or 16-bit format,
mono or stereo. The audio-out unit transfers 16- or 32-bit
sample data for mono, stereo or up to 8 audio channels
from memory to the external DACs. Any manipulation or
mixing of sound data is performed by the DSPCPU since
this processing will require only a small fraction of its pro-
cessing capacity.

2.5.8 S/PDIF Out Unit

The Sony/Philips Digital Interface Out (SPDO) unit al-
lows output of a 1-bit high-speed serial data stream. The
primary application is output of digital audio data in Sony/
Philips Digital Interface (S/PDIF) format to an external
electrically isolated transformer. The SPDO unit can also
be used as a general purpose high-speed data stream
output device such as a UART.

The SPDO unit supports 2-channel PCM audio, one or
more Dolby Digital six-channel data streams, or one or
more MPEG-1 or MPEG-2 audio streams (embedded
per Project 1937). It supports arbitrary programmable
sample rates independent of and asynchronous to the
AO unit sample rate.

259

The on-chip synchronous serial interface (SSI) is spe-
cially designed to interface to high integration analog mo-
dem frontends or ISDN frontend devices. In the analog
modem case, all of the modem signal processing is per-
formed in the PNX1300 DSPCPU.

Synchronous Serial Interface

25.10 I2C Interface

The I12C bus is a 2-wire multi-master, multi-slave inter-
face capable of transmitting up to 400kbit/sec. PNX1300
implements an 1°C master for use in single master envi-
ronments only. This interface allows PNX1300 to config-
ure and inspect the status of I2C peripheral devices, such
as video decoders, video encoders and some camera
types.

2.6 NEW IN PNX1300 (VERSUS TM-1300)

PNX1300/01/02/11 offers the following improvements
over the TM-1300:

« Lower core voltage for PNX1311 (2.2V core voltage)
and therefore lower power consumption.
+« DSPCPU speed of up to 200 MHz for PNX1302.

¢ Support for 256 Mbit SDRAM organized in x16. The
REFRESH counter must be changed. Refer for Sec-
tion 12.11, “Refresh” in Chapter 12, “SDRAM Mem-
ory System” for details.

¢ Support for 16 and 32-bit Main Memory Interface.

* Bug fixes in VI message passing mode.

« Additional VI mode where VI_DATA[9:8] in message
passing mode are not affected by the VI_DVALID
signal.

¢ PCl bug fix on PCI Special Cycles.

¢ Autonomous boot in non 1:1 ratio is fixed.

2.7 NEW IN PNX1300 (VERSUS TM-1100)

In addition to the features described in Section 2.6
PNX1300 offers also the following improvements over
the TM-1100:

* no external MATCHOUT to MATCHIN delay line.

« Video output speed improvement: up to 81 MHz.

« Video input speed improvement: up to 81 MHz.

« Prefetcheable SDRAM aperture to increase perfor-
mance. See Chapter 11, “PCl Interface.”

¢ Individual powerdown capability for each coproces-
sor (e.g. ICP, EVO, etc.).

« New AO coprocessor with four separate channels
and support of 16 or 32-bit samples. 8-bit samples
are no longer supported.

« New SPDO coprocessor (for output of SPDIF and
other 1-bit high-speed serial data streams)

2.8 NEW IN PNX1300 (VERSUS TM-1000)

In addition to the features described in Section 2.7
PNX1300 offers also the following improvements over
the TM-1000:

« New DSPCPU instructions. See Appendix A,
“PNX1300/01/02/11 DSPCPU Operations.”

« Video Output unit improvements (8-bit alpha blend-
ing, chroma keying, genlock). See Chapter 7,
“Enhanced Video Out.”

« Capability to intermix PCI2.1 and 8-bit peripherals or
ROM/Flash memories on the external bus. See
Chapter 22, “PCI-XIO External 1/O Bus.”

¢ An on-chip DVD authentication/descrambling copro-
cessor. Information available to DVD product devel-
opers on special request.

¢ Full 1149.1 boundary scan.

« Improved PCI DMA read performance. See Chapter
11, “PClI Interface.”

« Improved clock generation with new DDS blocks.

2-6 PRELIMINARY SPECIFICATION

DSPCPU Architecture

Chapter 3

3.1 BASIC ARCHITECTURE CONCEPTS

In the document the generic PNX1300 product name
refers to PNX1300 Series, or the PNX1300/01/02/11
products.

This section documents the system programmer or
‘bare-machine’ view of the PNX1300 CPU (or DSPCPU).
3.1.1

Figure 3-1 shows the DSPCPU’s 128 general purpose
registers, r0...r127. In addition to the hardware program

Register Model

by Gert Slavenburg, Marcel Janssens

though compiler or programmer conventions may assign
particular roles to particular registers. The DPC and SPC
relate to interrupt and exception handling and are treated
in Section 3.1.4, “SPC and DPC—Source and Destina-
tion Program Counter.” The PCSW (Program Control
and Status Word) register is treated in Section 3.1.3,
“PCSW Overview.” CCCOUNT, the 64-bit clock cycle
counter is treated in Section 3.1.5, “CCCOUNT—Clock
Cycle Counter.”

Table 3-1. DSPCPU registers

cou_nter, PC, there are 4 user-a}cce_ssible special purpose Register Size Details
registers, PCSW, DPC (destination program counter), -
SPC (source program counter), and CCCOUNT (0] 32 bits | Always reads as 0x0; must not be used
; : ’) destination of ti
Table 3-1 lists the registers and their purposes. as destination of Operarions
. . . rl 32 bits | Always reads as 0x1; must not be used
Reg|s§er r0 always contains the integer value 0 corre- as destination of operations
spgndmg to the bpolean value FALSE or the single-pre- 12_r127 | 32 bits | 126 general-purpose registers
cision floating point value +0.0. Register rl1 always con- b
tains the integer value '1' (TRUE'). The programmer is PC 32 bits | Program counter
NOT allowed to write to rO or r1. PCSW 32 bits | Program control & status word
Note: Writing to r0 or rl may cause reads from r0 or DPC 32 bits Destinaftionkprot?ramhcohunter; latches |
) ; . target of that is int t
rl scheduled in adjacent clock cycles to return unpre- . arget ortaken branch that |s Infernipte
dictable values. The standard assembler prevents/ SPC |32 bits | Source program counter; fatches target
forbids the use of r0 or r1 as a destination register. of taken branch that is not interrupte
. CCCOUNT | 64 bits | Counts clock cycles since reset
Registers r2 through r127 are true general purpose reg-
isters; the hardware does not imply their use in any way,
31 23 15 7
0000000000000000000000000000000O0o0|r0
O‘l rl
128 General-Purpose Registers L s
*r0 & rl fixed s .
¢ r2-r127 variable o .
L g
31 23 15 7 0
| |Pc
System Status & Control Registers | | PCsw
" poprc
) " Jsrc
T T T e pag g

Figure 3-1. PNX1300 registers.

PRELIMINARY SPECIFICATION

3-1

PNX1300/01/02/11 Data Book

Philips Semiconductors

3.1.2 Basic DSPCPU Execution Model

The DSPCPU issues one ‘long instruction’ every clock
cycle. Each instruction consists of several operations
(five operations for the PNX1300 microprocessor). Each
operation is comparable to a RISC machine instruction,
except that the execution of an operation is conditional
upon the content of a general purpose register. Exam-
ples of operations are:

IF rl0 iadd rll rl2 — rl3

(if r10 true, add r11 and r12 and write sum in r13)
rl0 1d32d(4) rl5 — rleé

(if r10 true, load 32 bits from mem[r15+4] into r16)
r20 jmpf r2l1 r22

(if r20 true and r21 false, jump to address in r22)

IF

IF

Each operation has a specific, known execution latency
in clock cycles. For example, iadd takes 1 cycle; thus the
result of an iadd operation started in clock cyclei is avail-
able for use as an argument to operations issued in cycle
i+1 or later. The other operations issued in cycle i cannot
use the result of iadd. The 1d32d operation has a latency
of 3 cycles. The result of an 1d32d operation started in cy-
cle j is available for use by other operations issued in cy-
cle j+3 or later. Branches, such as the jmpf example
above have three delay slots. This means that if a branch
operation in cycle k is taken, all operations in the instruc-
tions in cycle k+1, k+2 and k+3 are still executed.

In the above examples, r10 and r20 control conditional
execution of the operations. Also known as ‘guarding’,
here r10 and r20 contain the operation ‘guard’. See Sec-
tion 3.2.1, “Guarding (Conditional Execution).”

Certain restrictions exist in the choice of what operations
can be packed into an instruction. For example, the
DSPCPU in PNX1300 allows no more than two load/
store class operations to be packed into a single instruc-
tion. Also, no more than five results (of previously started
operations) can be written during any one cycle. The
packing of operations is not normally done by the pro-
grammer. Instead, the instruction scheduler (See Philips
TriMedia SDE Reference Manual) takes care of convert-
ing the parallel intermediate format code into packed in-
structions ready for the assembler. The rules are formally
described in the machine description file used by the in-
struction scheduler and other tools.

3.1.3 PCSW Overview

Figure 3-2 shows the PCSW register. The PNX1300 val-
ue of PCSW on reset is 0x800. For compatibility, any un-
defined PCSW fields should never be modified.

Note that the DSPCPU architecture has no condition
codes or integer arithmetic status flags. Integer opera-
tions that generate out-of-range results deliver an opera-
tion specific bit pattern. For examples, see dspiadd in
Appendix A, “PNX1300/01/02/11 DSPCPU Operations.”
Predicate operations exist that take the place of integer
status flags in a classical architecture. Multiword arith-
metic is supported by the ‘carry’ operation which gener-
ates a ‘0’ or ‘1’ depending on the carry that would be gen-
erated if its arguments were summed.

FP-Related Fields.The IEEE mode field determines the
IEEE rounding mode of all floating point operations, with
the exception of a few floating point conversion opera-
tions that use fixed rounding mode. For examples, see if-
ixrz, ifloatrz, ifixrz, ifloatrz in Appendix A, “PNX1300/01/
02/11 DSPCPU Operations.”

The FP exception flags are ‘sticky bits’ that are set as a
side effect of floating-point computations. Each floating
point operation can set one or more of the flags if it incurs
the corresponding exception. The flags can only be reset
by direct software manipulation of the PCSW (using the
writepcsw operation). The bits have the meanings shown
in Table 3-2.

The FP exception trap enable bits determine which FP
exception flags invoke CPU exception handling. An ex-
ception is requested if the intersection of the exception
flags and trap enable flags is non-zero. The acceptance
and handling of exceptions is described in Section 3.5,
“Special Event Handling.”

BSX (Bytesex). The DSPCPU has a switchable bytesex.
The BSX flag in the PCSW can be written by software.
Load/store operations observe little- or big-endian byte
ordering based on the current setting of BSX.

IEN (Interrupt Enable). The IEN flag disables or enables
interrupt processing for most interrupt sources. Only NMI
(non-maskable interrupt) bypasses IEN. The acceptance
and handling of interrupts is described in Section 3.5.3,
“INT and NMI (Maskable and Non-Maskable Interrupts).”

15 14 13 12
PCSWI[15:0] ‘ MSE ‘ WBE‘ RSE |unper

11 10 9 8 7 6 5 4 3
(O] ‘ IEN ‘ BSX ‘IEEE MODE‘ OFz ‘ IFZ ‘ INV ‘ OVF

2 1 0
UNF ‘ INX ‘ DBz ‘

Misaligned store exception
Write back error
Reserved exception

FP exceptions -

|EEE rounding mode
0 = to nearest, 1 = to zero, 2 = to positive, 3 = to negative

Byte sex (1 = little endian)

Count stalls (1 = Yes) PCSW = 0x800
Interrupt enable (1 = allow interrupts) after RESET
31 30 29 28 27 26 25 23 22 21 20 19 18 17 16
PCSWI31:16] | TRP | TRP | TRP TRP | TRP | TRP | TRP | TRP | TRP | TRP
BL16] | \/SE | wBE | RSE | UNPEF | TFE UNBEFINED OFz | IFZ | INV | OVF | UNF | INX | DBZ

Misaligned store |
exception trap enable

\
J Reserved exception
Write back error trap enable

trap enable

Trap on first exit

L FpP exception trap-enable bits ——

Figure 3-2. PNX1300 PCSW (Program Control and Status Word) register format.

3-2 PRELIMINARY SPECIFICATION

Philips Semiconductors

DSPCPU Architecture

Table 3-2. PCSW FP exception flag definitions

Flag Function

INV | Standard IEEE invalid flag

OVF | Standard IEEE overflow flag

UNF | Standard IEEE underflow flag
INX | Standard IEEE inexact flag

DBZ | Standard IEEE divide-by-zero flag

OFZ | ‘Output flushed to zero’ set if an operation caused a
denormalized result

IFZ | ‘Input flushed to zero’ set if an operation was applied to
one or more denormalized operands

CS (Count Stalls). The CS flag determines the mode of
CCCOUNT, the 64-bit clock cycle counter. If CS =‘1’, the
cycle counter increments on all clock cycles. If CS = ‘0’,
the clock cycle counter only increments on non-stall cy-
cles. See also Section 3.1.5, “CCCOUNT—Clock Cycle
Counter.” After RESET, CS is setto ‘1'.

MSE and TRPMSE (Misaligned-Store Exception). The
MSE bit will be set when the processor detects a store
operation to an address that is not aligned. For example,
a 32-bit store executed with an address that is not a mul-
tiple of four will cause MSE to be set. The TRPMSE bit
enables the DSPCPU to raise misaligned address ex-
ceptions. An exception is requested if the intersection of
MSE and TRPMSE is non-zero. The acceptance and
handling of exceptions is described in Section 3.5, “Spe-
cial Event Handling.”

Unaligned load operations do not cause an exception,
because load operations can be speculative (i.e. their re-
sult is thrown away).

When the DSPCPU generates an unaligned address, the
low order address bit(s) (one bit in the case of a 16-bit
load, two bits for a 32-bit load) are forced to zero and the

load/store is executed from this aligned address.

WBE and TRPWBE (Write Back Error). The WBE flag
will be set whenever a program attempts to write back
more than 5 results simultaneously. This is indicative of
a programming error, likely caused by the scheduler or
assembler. The TRPWBE bit enables the corresponding
exception.

RSE, TRPRSE (Reserved Exception). RSE and TR-
PRSE are reserved for diagnostic purposes and not de-
scribed here.

TFE (Trap on First Exit). The TFE bitis a support bit for
the debugger. The TFE bit is set by the debugger prior to
taking a (non-interruptible) jump to the application pro-
gram. On the next interruptible jump (the first interrupt-
ible jump in the application being debugged), an excep-
tion is requested because the TFE bit is set. The
acceptance and handling of exception processing is de-
scribed in Section 3.5, “Special Event Handling.” It is the
responsibility of the exception handler software to clear
the TFE bit. The hardware does not clear or set TFE.

Corner-case note: Whenever a hardware update (e.g. an
exception being raised) and a software update (through
writepcsw) of the PCSW coincide, the new value of the

PCSW will be the value that is written by the writepcsw
instruction, except for those bits that the hardware is cur-
rently updating (which will reflect the hardware value).

3.1.4 SPC and DPC—Source and

Destination Program Counter

The SPC and DPC registers are support registers for ex-
ception processing. The DPC is updated during every in-
terruptible jump with the target address of that interrupt-
ible jump. If an exception is taken at an interruptible
jump, the value in the DPC register can be used by the
exception handling routine as the return address to re-
sume the program at the place of interruption.

The SPC register is updated during every interruptible
jump that is not interrupted by an exception. Thus on an
interrupted interruptible jump, the SPC register is not up-
dated. The SPC register allows the exception handling
routine to determine the start address of the decision tree
(a block of uninterruptible, scheduled PNX1300 code)
that was executing when the exception was taken (see
also Section 3.5, “Special Event Handling”).

Corner-case note: Whenever a hardware update (during
an interruptible jump) and a software update (through
writedpc or writespc) coincide, the software update takes
precedence.

3.15 CCCOUNT—cClock Cycle Counter

CCCOUNT is a 64-bit counter that counts clock cycles
since RESET. Cycle counting can occur in two modes,
depending on PCSW.CS. If PCSW.CS = ‘1, the cycle
countincrements on every CPU clock cycle. If PCSW.CS
=0, the clock cycle count only increments on non-stall
CPU cycles.

CCCOUNT is implemented as a master counter/slave
register pair. The master 64-bit counter gets updated
continuously. The value of the CCCOUNT slave register
is updated with the current master cycle count during
successful interruptible jumps only. The cycles and hicy-
cles DSPCPU operations return the content of the 32
LSBs and 32 MSBs, respectively, of the slave register.
This ensures that the value returned by hicycles and cy-
cles is coherent, as long as there is no intervening inter-
ruptible jump, which makes these operations suitable for
64-bit high resolution timing from C source code pro-
grams. The curcycles DSPCPU operation returns the 32
LSBs of the master counter. The latter operation can be
used for instruction cycle precise timing. When used, it
must be precisely placed, probably at the assembly code
level.

3.1.6

The bit pattern generated by boolean valued operations
(ileq, fleq etc.) is '00...00" (FALSE) or '00...01' (TRUE).
When interpreting a bit pattern as a boolean value, only
the LSB is taken into account, i.e. 'xx..x0' is interpreted
as FALSE and 'xx..x1"is interpreted as TRUE. In partic-
ular, wherever a general purpose register is used as a
‘guard’, the LSB determines whether execution of the
guarded operation takes place.

Boolean Representation

PRELIMINARY SPECIFICATION 3-3

PNX1300/01/02/11 Data Book

Philips Semiconductors

3.17

The architecture supports the notion of ‘unsigned inte-
gers' and 'signed integers.' Signed integers use the stan-
dard two’s-complement representation.

Integer Representation

Arithmetic on integers does not generate traps. If a result
is not representable, the bit pattern returned is operation
specific, as defined in the individual operation description
section. The typical cases are:

« Wrap around for regular add- and subtract-type oper-
ations.

« Clamping against the minimum or maximum repre-
sentable value for DSP-type operations.

« Returning the least significant 32-bit value of a 64-bit
result (e.g., integer/unsigned multiply).

3.1.8

The PNX1300 architecture supports single precision (32-
bit) IEEE-754 floating point arithmetic.

All arithmetic conforms to the IEEE-754 standard in
flush-to-zero mode.

Floating Point Representation

All floating point compute operations round according to
the current setting of the PCSW IEEE mode field. The
current setting of the field determines result rounding (to
nearest, to zero, to positive infinity, to negative infinity).
Conversions from float to integer/unsigned are available
in two forms: a PCSW rounding-mode-observing form
and an ANSI-C-specific-rounding form. The ANSI-C-
specific form forces round to zero regardless of the
PCSW IEEE rounding mode. Conversion from integer/
unsigned to float always observes the IEEE rounding
mode.

Floating point exceptions are supported with two mecha-
nisms. Each individual floating point operation (e.g. fadd)
has a counterpart operation (faddflags) that computes
the exception flag values. These o?erations can be used
for precise exception identification®. The second mecha-
nism uses the ‘sticky’ exception bits in the PCSW that
collect aggregate exception events. The PCSW excep-
tion bits can selectively invoke CPU exception handling.
See Section 3.5.2, “EXC (Exceptions).”

Table 3-3 shows the representation choices that were
made in PNX1300'’s floating point implementation .
3.19

The addressing modes shown in Table 3-4 are support-
ed by the DSPCPU architecture (store operations allow
onty disptacementmode):

Addressing Modes

1. This mechanism allows precise exception identification
in the context of our multi-issue microprocessor core—
where many floating point operations may issue simul-
taneously—at the expense of additional operations
generated by the compiler. It also allows the compiler to
issue compute operations speculatively and compute
exceptions precisely.

Table 3-3. Special Float Value Representation

Item Representation

+inf 0x7f800000

-inf 0xff800000

self generated qNaN | Oxffffffff

result of operation
on any NaN argu-
ment

argument | 0x00400000 (forcing the
NaN to be quiet)

signalling NaN never generated by PNX1300,

accepted as per IEEE-754

Table 3-4. Addressing Modes

Mode Suffix Applies to Name
R[i] + scaled(#) d Load & Store | Displacement
RI[i] + RK] r Load only Index
R[i] + scaled(R[k]) X Load only Scaled index

In these addressing modes, R([i] indicates one of the gen-
eral purpose registers. The scale factor applied (1/2/4) is

Table 3-5. Minimum values for implementation-
dependent addressing mode components

Parameter Minimum Range

‘iand 'k’ |0..127 (i.e., each implementation has at least 128

registers)

-64..63 (i.e., displacements will be at least 7 bits
long and signed)

equal to the size of the item loaded or stored, i.e. 1 for a
byte operation, two for a 16-bit operation and four for a
32-bit operation. The range of valid 1", 'j' and k' values
may differ between implementations of the architecture;
the minimum values for implementation-dependent char-
acteristics are shown in Table 3-5.

Note that the assembly code specifies the true displace-
ment, and not the value to be scaled. For example,
‘ld32d(-8) r3' loads a 32-bit value from address (r3 — 8).
This is encoded in the binary operation pattern as a -2 in
the seven-bit field by the assembler. At runtime, the
scale factor four is applied to reconstruct the intended
displacement of -8.

3.1.10 Software Compatibility

The DSPCPU architecture expressly does not support
binary compatibility between family members. The ANSI
C compiler ensures that all family members are compat-
ible at the source-code level.

3-4 PRELIMINARY SPECIFICATION

Philips Semiconductors

DSPCPU Architecture

3.2 INSTRUCTION SET OVERVIEW

3.2.1

In the PNX1300 architecture, all operations can be op-
tionally 'guarded'. A guarded operation executes condi-
tionally, depending on the value in the ‘guard’ register.
For example, a guarded add is written as:

Guarding (Conditional Execution)

IF R23 iadd R14 R10 — R13
This should be taken to mean
if R23 then R13 « R14 + R10.

The 'if R23' clause controls the execution of the opera-
tion based on the LSB of R23. Hence, depending on the
LSB of R23, R13 is either unchanged or set to contain
the integer sum of R14 and R10.

Guarding applies to all DSPCPU operations, except iimm
and uimm (load-immediate). It controls the effect on all
programmer-visible states of the system, i.e. register val-
ues, memory content, exception raising and device state.

3.2.2

Memory is byte addressable. Loads and stores must be
‘naturally aligned’, i.e. a 16-bit load or store must target
an address that is a multiple of 2. A 32-bit load or store
must target an address that is a multiple of 4. The BSX
bit in the PCSW determines the byte order of loads and
stores. For example, see 1d32 and st32 in Appendix A,
“PNX1300/01/02/11 DSPCPU Operations.”

Only 32-bit load and store operations are allowed to ac-
cess MMIO registers in the MMIO address aperture (see
Section 3.4, “Memory and MMIO”). The results are unde-
fined for other loads and stores. A load from a non-exis-
tent MMIO register returns an undefined result. A store to
a non-existent MMIO register times out and then does
not happen. There are no other side effects of an access
to a nonexistent MMIO register. The state of the BSX bit
has no effect on the result of MMIO accesses.

Load and Store Operations

Loads are allowed to be issued speculatively. Loads out-
side the range of valid data memory addresses for the
active process return an implementation-dependent val-
ue and do not generate an exception. Misaligned loads
also return an implementation dependent value and do
not generate an exception.

If a pair of memory operations involves one or more com-
mon bytes in memory, the effect on the common bytes is
as defined in Table 3-6.

Table 3-4 shows the supported addressing modes. The
minimum values of implementation-dependent address-
ing-mode components are shown in Table 3-5.

Note: The index and scaled-index modes are not
allowed with store opcodes, due to the hardware

Table 3-6. Behavior of loads and stores with
coincident addresses

Condition Behavior

If a store is issued before a load, the value
loaded contains the new bytes.

Tstore < Tioad

If aload is issued before a store, the value
loaded contains the old bytes.

Tioad < Tstore

Tstore1 < Tstore2 | If Storel is issued before store2, the result-
ing value contains the bytes of store2.
Tstore = Tioad | If @ load and store are issued in the same

clock cycle, the resultis UNDEFINED.

Tstore1 = Tstore2 | If two stores are issued in the same clock
cycle, the resulting stored value is unde-

fined.

restriction that each operation have at most 2 source
operand registers and 1 condition register. Stores
use 1 operand register for the value to be stored
leaving only 1 register to form an address.

The scale factor applied (1/2/4) in the scaled addressing
modes is equal to the size of the item loaded or stored,
i.e. 1 for a byte operation, 2 for a 16-bit operation and 4
for a 32-bit operation.

Table 3-7 lists the available load and store mnemonics
for the three addressing modes.

Table 3-7. Load and store mnemonics

Operation Displacement | Index SI?%ISS'

8-bit signed load ildgad ild8r —

8-bit unsigned load uldad uld8r —

16-bit signed load ild16d ild16r ild16x
16-bit unsigned load | uld16d uld16r | uld16x
32-bit load 1d32d 1d32r 1d32x
8-bit store st8d — —

16-bit store st16d — —

32-bit store st32d — —

Example usage of load and store operations:

IF r10 ildied(12) rl2 — rl3
If the LSB of r10 is set, load 16 bits starting at
address (r12+12) using the byte ordering indicated
in PCSW.BSX, sign-extend the value to 32 bits and
store the resultin rl13.

IF rl0 st32d(40) rl2 ril3
If the LSB of r10 is set, store the 32-bit value from
r13 to the address (r12+40) using the byte ordering
indicated in PCSW.BSX.

PRELIMINARY SPECIFICATION 3-5

PNX1300/01/02/11 Data Book

Philips Semiconductors

3.2.3 Compute Operations

Compute operations are register-to-register operations.
The specified operation is performed on one or two
source registers and the result is written to the destina-
tion register.

Immediate Operations. Immediate operations load an
immediate constant (specified in the opcode) and pro-
duce a resultin the destination register.

Floating-Point Compute Operations. Floating-point
compute operations are register-to-register operations.
The specified operation is performed on one or two
source registers and the result is written to the destina-
tion register. Unless otherwise mentioned all floating
point operations observe the rounding mode bits defined
in the PCSW register. All floating-point operations not
ending in ‘flags’ update the PCSW exception flags. All
operations ending in ‘flags’ compute the exception flags
as if the operation were executed and return the flag val-
ues (in the same format as in the PCSW); the exception
flags in the PCSW itself remain unchanged.

Multimedia Operations. These special compute opera-
tions are like normal compute operations, but the speci-
fied operations are not usually found in general purpose
CPUs. These operations provide special support for mul-
timedia applications.

3.24 Special-Register Operations

Special register operations operate on the special regis-
ters: PCSW, DPC, SPC and CCCOUNT.

3.25 Control-Flow Operations

Control-flow operations change the value of the program
counter. Conditional jumps test the value in a register
and, based on this value, change the program counter to
the address contained in a second register or continue
execution with the next instruction. Unconditional jumps
always change the program counter to the specified im-
mediate address.

Control-flow operations can be interruptible or non-inter-
ruptible. Execution of an interruptible jump is the only oc-
casion where PNX1300 allows special event handling to
take place (see Section 3.5, “Special Event Handling”).

3.3 PNX1300 INSTRUCTION ISSUE RULES

The PNX1300 VLIW CPU allows issue of 5 operations in
each clock cycle according to a set of specific issue
rules. The issue rules impose issue time constraints and
a result writeback constraint. Any set of operations that
meets all constraints constitutes a legal PNX1300 in-
struction. A more extensive description and a few special
case issue rules and limitations can be found in the Phil-
ips TriMedia SDE documentation.

Issue time constraints:

« an operation implies a need for a functional unit type
(as documented in Appendix A, “PNX1300/01/02/11
DSPCPU Operations.”)

¢ each operation requires an issue slot that has an
instance of the appropriate functional unit type
attached

issue slot 1 issue slot 2 issue slot 3 issue slot 4 issue slot 5
[CONST | CONST | CONST | CONST | CONST |
| ALU | ALU | ALU | ALU | ALU |
| SHIFTER SHIFTER FCOMP | DMEM DMEM
FALU DSPMUL DSPMUL FALU DMEMSPEC
BRANCH BRANCH BRANCH
IFMUL IFMUL
DSPALU FTOUGH DSPALU
(latency 17,
recovery 16)

Figure 3-3. PNX1300 issue slots, functional units, and latency.

3-6 PRELIMINARY SPECIFICATION

Philips Semiconductors

DSPCPU Architecture

« functional units should be ‘recovered’ from any prior
operation issues

Writeback constraint:

¢« No more than 5 results should be simultaneously
written to the register file at any point in time (write-
back occurs ‘latency’ cycles after issue)

Figure 3-3 shows all functional units of PNX1300, includ-

ing the relation to issue slots, and each functional unit's

latency (e.g. 1 for CONST, 3 for FALU, etc.). With the ex-
ception of FTOUGH, each functional unit can accept an

operation every clock cycle, i.e. has a recovery time of 1.
The binding of operations to functional unit types is sum-
marized in Table 3-8. In Appendix A, “PNX1300/01/02/
11 DSPCPU Operations”, each operation lists the pre-

cise functional unit and unit latency.

Table 3-8. Functional unit operations

unit type operation category
const immediate operations
alu 32-bit arithmetic, logical, pack/unpack
dspalu dual 16-bit, quad 8-bit multimedia arithmetic
dspmul dual 16-bit and quad 8-bit multimedia multiplies
dmem loads/stores
dmemspec | cache coherency, cache control, prefetch
shifter multi-bit shift
branch control flow
falu floating point arithmetic & conversions
ifmul 32-bit integer and floating point multiplies
fcomp single cycle floating point compares
ftough iterative floating point square root and division

34 MEMORY AND MMIO

PNX1300 defines four apertures in its 32-bit address
space: the memory hole, the DRAM aperture, the MMIO
aperture and the PCI apertures (See Figure 3-4).The
memory hole covers addresses 0..0xff. The DRAM and
MMIO apertures are defined by the values in MMIO reg-
isters; the PCI apertures consist of every address that
does not fall in the other three apertures.

34.1

DRAM is mapped into an aperture extending from the
address in DRAM_BASE to the address in
DRAM_LIMIT. The maximum DRAM aperture size is 64
MB.

The MMIO aperture is located at address MMIO_BASE
and is a fixed 2-MB size.

In the default operating mode, all memory accesses not
going to either the hole, DRAM or MMIO space are inter-
preted as PCI accesses. This behavior can be overrid-
den as described in Section 5.3.8, “Memory Hole and
PCI Aperture Disable.”

The MMIO aperture and the DRAM aperture can be at
any naturally aligned location, in any order, but should

Memory Map

not overlap; if they do, the consequences are undefined.
The values of DRAM_BASE, DRAM_LIMIT, and
MMIO_BASE are set during the boot process. In the
case of a PCI host assisted boot, the values are deter-
mined by the host BIOS. In case of standalone boot (i.e.,
PNX1300 is the PCI host), the values are taken from the
boot ROM. Refer to Chapter 13, “System Boot” for de-
tails. DSPCPU update of DRAM_BASE and
MMIO_BASE is possible, but not recommended, see
Section 11.6.3, “MMIO/DRAM_BASE updates.”

3.4.2

The memory hole from address 0 to Oxff serves to protect
the system from performance loss due to speculative
loads. Due to the nature of C program references, most
speculative loads issued by the DSPCPU fall in the
range covered by the hole. Activated by default upon RE-
SET, the hole serves to ensure that these speculative
loads do NOT cause PCI read accesses and slow down
the system. The value returned by any data load from the
hole is 0. The hole only protects loads. Store operations
in the hole do cause writes to PCl, SDRAM or MMIO as
determined by the aperture base address values. If the
SDRAM aperture overlaps the memory hole, the memory
hole is ignored.

The hole can be temporarily disabled through the
DC_LOCK_CTL register. This is described in Section
5.3.8, “Memory Hole and PCI Aperture Disable.”

The Memory Hole

3.4.3 MMIO Memory Map

Devices are controlled through memory-mapped device
registers, referred to as MMIO registers. To ensure com-
patibility with future devices, any undefined MMIO bits
should be ignored when read, and written as ‘0’s. Some
devices can autonomously access data memory (DMA)
and most devices can cause CPU interrupts.

The 2-MB MMIO aperture is initially located at address
OXEFEO00000 on RESET; it is relocated by the PCI BIOS

OXFFFF FFFFF
PCI

A
2MB

MMIO Aperture

MMIO_BASE| y

PCI

DRAM_LIMIT| A
1 MB - 64 MB

DRAM Aperture

DRAM_BASE| ¥

PCI

0x0000 0000|_$256byte_hole

Figure 3-4. PNX1300 memory map.

PRELIMINARY SPECIFICATION 3-7

PNX1300/01/02/11 Data Book

Philips Semiconductors

for PC-hosted PNX1300 boards; its final location is de-
termined by the boot EEPROM for standalone systems.
See Chapter 13, “System Boot” for more information.
Figure 3-5 gives a detailed overview of the MMIO mem-
ory map (addresses used are offsets with respect to the
MMIO base). The operating system on PNX1300 can
change MMIO_BASE by writing to the MMIO_BASE
MMIO location. User programs should not attempt this.
Refer to the TriMedia SDE Reference Manual for the
standard method to access the device registers from C
language device drivers.

Only 32-bit load and store operations are allowed to ac-
cess MMIO registers in the MMIO address aperture. The
results are undefined for other loads and stores. Reads
from non-existent MMIO registers return undefined val-
ues. Writes to nonexistent MMIO registers time out.
There are no side effects of accesses to nonexistent
MMIO registers. The state of the PCSW BSX bit has no
effect on the result of MMIO accesses.

The Icache tag and LRU bit access aperture give the
DSPCPU read-only access to the Icache status. Refer to
Section 5.4.8, “Reading Tags and Cache Status” for de-
tails.

The EXCVEC MMIO location is explained in Section
3.5.2, “EXC (Exceptions).” Section 3.5.3, “INT and NMI
(Maskable and Non-Maskable Interrupts),” describes
the locations that deal with the setup and handling of in-

terrupts: ISETTING, IPENDING, ICLEAR, IMASK and
the interrupt vectors. The timer MMIO locations are de-
scribed in Section 3.8, “Timers.” The instruction and
data breakpoint are described in Section 3.9, “Debug
Support.” The MMIO locations of each device are treat-
ed in the respective device chapters.

3.5 SPECIAL EVENT HANDLING

The PNX1300 microprocessor responds to the special
events shown in Table 3-9, ordered by priority.

With the exception of RESET, which is enabled at all
times, the architecture of the DSPCPU allows special
event handling to begin only during an interruptible jump
operation (ijmpt, ijmpf or ijmpi) that succeeds (i.e., is a
taken jump). EXC, NMI and INT handling can be initiated
during handling of an EXC or an INT, butonly during suc-
cessful interruptible jumps.

Table 3-9. Special Events and Event Vectors

OX1F FFFFF
Reserved
for
Future Use
0x10 3800 JTAG interface
0x10 3400 1°C interface
0x10 3000 PCl interface
0x10 2C00 SSl interface
0x10 2800 VLD coprocessor
0x10 2400 Image coprocessor
0x10 2000 Audio Out
0x10 1C00 Audio In
0x10 1800 Video Out
0x10 1400 Video In
0x10 1000 Debug support
0x10 0C00 Timers
0x10 0800| Vectored interrupt controller
0x10 0400 MMIO base
0x10 0000| Main memory, cache control
Reserved
for
Future Use
0x01 0000
0x00 0000 Icache tags & LRU (r/0)

Event Vector
RESET | (Highest priority) vector to DRAM_BASE
EXC | (All exceptions) vector to EXCVEC (programmable)
NMI, | (Non-maskable interrupt, maskable interrupt) use
INT the programmed vector (one of 32 vectors depend-
ing on the interrupt source)
0x10 1200 data breakpoints
0x10 1000 instruction breakpoints
0x10 0C60 systimer
0x10 0C40 timer3
0x10 0C20 timer2
0x10 0C00 timerl
0x10 08Fc intvec31
0x10 08F8 intvec30
0x10 0888 intvec2
0x10 0884 intvecl
0x10 0880 intvecO
0x10 0828 imask
0x10 0824 iclear
0x10 0820 ipending
0x10 081C isetting3
0x10 0818 isetting2
0x10 0814 isettingl
0x10 0810 isetting0
0x10 0800 excvec
0x10 0400 MMIO_BASE
0x10 0004 DRAM_LIMIT
0x10 0000 DRAM_BASE

Figure 3-5. Memory map of MMIO address space (addresses are offset from MMIO_BASE).

3-8 PRELIMINARY SPECIFICATION

Philips Semiconductors

DSPCPU Architecture

The instruction scheduler uses interruptible jumps exclu-
sively for inter-decision tree jumps. Hence, within a deci-
sion tree, no special-event processing can be initiated. If
a tree-to-tree jump is taken, special-event processing is
allowed. Since the only registers live at this point (i.e.,
that contain useful data) are the global registers allocat-
ed by the ANSI C compiler, only a subset of the registers
needs to be preserved by the event handlers. Refer to
the TriMedia SDE Reference Manual for details on which
registers can be in use. The DSPCPU register state can
be described by the contents of this subset of general
purpose registers and the contents of the PCSW and the
DPC value (the target of the inter-tree jump).

The priority resolution mechanism built into the DSPCPU
hardware dispatches the highest-priority, non-masked
special-event request at the time of a successful inter-
ruptible jump operation. In view of the simple, real-time-
oriented nature of the mechanisms provided, only limited
nesting of events should be allowed.

351 RESET

RESET is the highest priority special event. It is asserted
by external hardware or by the host CPU. PNX1300 will
respond to it at any time.

External hardware reset through the TRI_RESET# pin
initiates boot protocol execution as described in Chapter
13, “System Boot.” This causes the current PC value to
be lost and instruction execution to start from address
DRAM_BASE.

A PCI host CPU can perform a PNX1300 DSPCPU-only
reset by an MMIO write to the BIU_CTL.SR and CR bits.
Such a reset does not cause a full boot, instead the
DSPCPU resumes execution from DRAM_BASE.

3.5.2 EXC (Exceptions)

The DSPCPU enters EXC special-event processing un-

der the following conditions:

1. RESET is de-asserted.

2. The intersection PCSWI[15,6:0] & PCSWI[31,22:16] is
non-empty or PCSW.TFE is set.

3. A successful interruptible jump is in the final jump ex-
ecution stage.

DSPCPU hardware takes the following actions on the ini-

tiation of EXC processing:

1. DPC is assigned the intended destination address of
the successful jump.

2. Instruction processing starts at EXCVEC.

All other actions are the responsibility of the EXC handler
software. Note that no other special event processing will
take place until the handler decides to execute an inter-
ruptible jump that succeeds.

3.5.3 INT and NMI (Maskable and Non-
Maskable Interrupts)

The on-chip Vectored Interrupt Controller (VIC) provides
32 INT request input hardware lines. The interrupt con-
troller prioritizes and maps attention requests from sev-
eral different peripherals onto successive INT requests
to the DSPCPU.

INT special event processing will occur under the follow-
ing conditions:

1. RESET is de-asserted.

2. The intersection PCSWI[15,6:0] & PCSWI[31,22:16] is
empty and PCSW.TFE is not set.

3. The intersection of IPENDING and IMASK is non-
empty.

4. The interrupt is at level NMI or PCSW.IEN = 1.

5. A successful interruptible jump is in the final jump ex-
ecution stage.

DSPCPU hardware takes the following actions on the ini-
tiation of NMI or INT processing:

1. DPC gets assigned the intended destination address
of the successful jump.

2. Instruction processing starts at the appropriate inter-
rupt vector.

All other actions are the responsibility of the INT handler
software. Note that no other special event processing will
take place until the handler decides to execute an inter-
ruptible jump that succeeds.

3,531

Each of the 32 interrupt sources can be assigned an ar-
bitrary interrupt vector (the address of the first instruction
of the interrupt handler). A vector is setup by writing the
address to one of the MMIO locations shown in
Figure 3-6. The state of the MMIO vector locations is un-
defined after RESET. (Addresses of the MMIO vector
registers are offset with respect to MMIO_BASE.)

Interrupt vectors

— T
Source 31 vector

Source 30 vector

T
Source 2 vector
BRI S

Source 1 vector
I S

MMIO_BASE
offset: 31
0x10 08FC INTVEC31 (r/w)
0x10 08F8 INTVEC30 (r/w)
0x10 0888 INTVEC2 (r/w)
0x10 0884 INTVEC1 (r/w)
0x10 0880 INTVECO (r/w)

Source 0 vector

Figure 3-6. Interrupt vector locations in MMIO address space.

PRELIMINARY SPECIFICATION 3-9

PNX1300/01/02/11 Data Book

Philips Semiconductors

Programmer’s note: See the Philips TriMedia Cookbook
(Book 2 of TriMedia SDE documentation) for information
on writing interrupt handlers.

3.5.3.2

DSPCPU interrupt sources can be programmed to oper-
ate in either level-sensitive or edge-triggered mode. Op-
eration in edge-triggered or level-sensitive mode is de-
termined by a bit in the ISETTING MMIO locations
corresponding to the source, as defined in Figure 3-7.
On RESET, all ISETTING registers are cleared.

In edge-triggered mode, the leading edge of the signal
on the device interrupt request line causes the VIC (Vec-
tored Interrupt Controller) to set the interrupt pending flag
corresponding to the device source number. Note that,
for active high signals, the leading edge is the positive
edge, whereas for active low request signals (such as
PCI INTA#), the negative edge is the leading edge. The
interrupt remains pending until one of two events occurs:

Interrupt modes

¢ The VIC successfully dispatches the vector corre-
sponding to the source to the PNX1300 CPU, or

* PNX1300 CPU software clears the interrupt-pending
flag by a direct write to the ICLEAR location.

No interrupt acknowledge to ICLEAR is needed for de-
vices operating in edge-triggered mode, since the vector
dispatch clears the IPENDING request. The device itself
may however need a device-specific interrupt acknowl-
edge to clear the requesting condition. Edge-triggered
mode is not recommended for devices that can signal
multiple simultaneous interrupt conditions. The on-chip
timers must be operated in edge triggered mode.

In level-sensitive mode, the device requests an interrupt
by asserting the VIC source request line. The device
holds the request until the device interrupt handler per-
forms a device interrupt acknowledge. It is highly recom-
mended that all off-chip and on-chip sources, with the ex-
ception of the timers, operate in level-sensitive mode.

3.5.33

All devices capable of generating level-triggered inter-
rupts have interrupt acknowledge bits in their memory
mapped control registers for this purpose. An interrupt
acknowledge is performed by a store to such control reg-

Device interrupt acknowledge

ister, with a ‘1’ in the bit position(s) corresponding to the
desired acknowledge flags.

Programmers note: the store operation that performs the
interrupt acknowledge should be issued at least 2 cycles
before the (interruptible) jump that ends an interrupt han-
dler. This ensures that the same interrupt is not dis-
patched twice due to request de-assertion clock delays.

3534

Each interrupt source can be programmed to request
one out of eight levels of priorities. The highest priority
level (level 7) corresponds to requesting an NMIl—an in-
terrupt that cannot be masked by the DSPCPU PC-
SW.IEN bit. The other levels request regular interrupts,
that can be masked as a group by the PCSW.IEN flag.
Level six represents the highest priority normal interrupt
level and level zero represents the lowest. Refer to
Figure 3-7 for details of programming the priority level.

Interrupt priorities

The VIC arbitrates the highest-priority pending interrupt
requestor. Sources programmed to request at the same
level are treated with a fixed priority, from source number
0 (highest) to 31 (lowest). At such time as the DSPCPU
is willing to process special events, the vector of highest
priority NMI source will be dispatched. If no NMI is pend-
ing, and the DSPCPU allows regular interrupts (PC-
SW.IEN is asserted), the vector of the highest priority
regular source is dispatched. Once a vector is dis-
patched, the corresponding interrupt pending flag is de-
asserted (edge triggered mode sources only).

3,535

A single MMIO register (IMASK in Figure 3-8) allows
masking of an arbitrary subset of the interrupt sources.
Masking applies to both regular as well as NMI level re-
questors. Masking is used by software to disable unused
devices and/or to implement nested interrupt handling. In
the latter case, each interrupt handler can stack the old
IMASK content for later restoration and insert a new
mask that only allows the interrupts it is willing to handle.
For level-triggered device handlers, IMASK should also
exclude the device itself to prevent repeated handler ac-
tivation.

Interrupt masking

Each interrupt source device typically has its own inter-
rupt enable flag(s) that determine whether certain key

MMIO_BASE
Offset 31\ T T 27\ T T 23 T T 19\ T T 1 T T T 11\ T T 7\ T T 3\ T \0
0x10081C ISETTING3 ('w) | MP31 | MP30 | MP29 | MP28 | MP27 | MP26 | MP25 | MP24 |
0x100818 ISETTING2 (/w) | MP23 | MP22 | MP21 | MP20 | MP19 | MP18 | MP17 | MP16 |
0x100814 ISETTINGL (w) | MP15 | MP14 | MP13 | MP12 | MP1l | MP10 | MP9 | mpg |
0x100810 ISETTINGO (/w) | mP7 | mP6 | mMPs | mp4a | mp3 | wmP2 | mP1 | MPO |
Each MP Field: Each MP Field:
Oxxx source operates in edge-triggered mode x111 NMI (highest) priority
1xxx source operates in level-sensitive mode x110 maskable level 6
X000 maskable level 0

Figure 3-7. Interrupt mode and priority MMIO locations and formats.

3-10 PRELIMINARY SPECIFICATION

Philips Semiconductors

DSPCPU Architecture

device events lead to the request of an interrupt. In addi-
tion, the PCSW.IEN flag determines whether the
DSPCPU is willing to handle regular interrupts. Non
maskable interrupts ignore the state of this flag.

All three mechanisms are necessary: the PCSW.IEN flag
is used to implement critical sections of code during
which the RTOS (real-time operating system) is unable
to handle regular interrupts. The IMASK is used to allow
full control over interrupt handler nesting. The device in-
terrupt flags set the operational mode of the device.

When RESET is asserted, IPENDING, ICLEAR, and
IMASK are set to all zeroes. (MMIO register addresses
shown in Figure 3-8 are offset addresses with respect to
MMIO_BASE.)

3.5.3.6 Software interrupts and
acknowledgment

The IPENDING register shown in Figure 3-8 can be read
to observe the currently pending interrupts. Each bit read
depends on the mode of the source:

« For a level-sensitive source, a bit value corresponds
to the current state of the device interrupt request
line.

« For an edge-triggered interrupt, a ‘1’ is read if and
only if an interrupt request occurred and the corre-
sponding vector has not yet been dispatched.

Software can request an interrupt for sources operating
in edge-triggered mode. Writes to the IPENDING register
assert an interrupt request for all sources where a 1 oc-
curred in the bit position of the written value. The state of
sources where a 0 occurred in the written value is un-
changed. Writes have no effect on level-sensitive mode
sources. The interrupt request, if not masked, will occur
at the next successful interruptible jump. This differs from
the conventional software interrupt-like semantics of
many architectures. Any of the 32 sources can be re-
quested in software. In normal operation however, soft-
ware-requested interrupts should be limited to source
vectors not allocated for hardware devices. Note that an-
other PCI master can request interrupts by manipulating
the IPENDING location in the MMIO aperture. This is
useful for inter-processor communication.

The ICLEAR register reads the same as the IPENDING
register. Writes to the ICLEAR register serve to clear
pending flags for edge-triggered mode sources. All IP-
ENDING flags corresponding to bit positions in which ‘1's
are written are cleared. IPENDING flags corresponding
to bit positions in which ‘0’s are written are not affected.
Writes have no effect on level-sensitive mode sources.
When a pending interrupt bit is being cleared through a
write to the ICLEAR register at the same time that the
hardware is trying to set that interrupt bit, the hardware
takes precedence.

3.5.3.7

In most applications, it is desirable not to nest NMls. The
NMI interrupt handler can accomplish this by saving the
old IMASK content and clearing IMASK before the first
interruptible jump is executed by the NMI handler.

NMI sequentialization

3.5.3.8

Table 3-10 shows the assignment of devices to interrupt
source numbers, as well as the recommended operating
mode (edge or level triggered). Note that there are a total
of 5 external pins available to assert interrupt requests.
The PCI INTA to INTD requests are asserted by active
low signal conventions, i.e. a zero level or a negative
edge asserts a request. The USERIRQ pin operates with
active high signalling conventions.

Interrupt source assignment

3.6 PNX1300 TO HOST INTERRUPTS

In systems where PNX1300 is operating in the presence
of a host CPU on PCI, PNX1300 can generate interrupts
to the host, using any combination of the four PCI INTA#
to INTD# pins. In a typical host system, only one of these
pins needs to be wired to the PCI bus interrupt request
lines. Any unused pins of this group are then available for
use as software programmable 1/O pins.

The INT_CTL register (see Figure 3-9) IEx bits, when
set, enable the open collector driver of the four
INTD#..INTA# pins. The INTx bits determine the output
value generated (if enabled). A ‘1’ in INTx causes the
corresponding PCI interrupt pin to be asserted (low IN-
Tx# pin). The ISx bits are read-only and reflect the cur-

MMIO_BASE
offset: 31 23 15 7 0
ox00828 vaskew) [[[[[[[[[[[T[T[TTTTTITTTITIT]]
Each IMASK(j) bit:
On read or write, 0= disallow source i interrupt request
On read or write, 1 = allow source i interrupt request
ox00824 wctear(w) [[[[[[[[[[[[[[T[T[TTTTTTITI T T]]
Each ICLEAR(i) bit:
On read, same as IPENDING(i)
On write, 1 = clear source i interrupt request
ox00820 wENDING (w) [[[[[[T [[T [[TTTIITTITIITTTIITTT]
Each IPENDING(j) bit:
Onread, 1 = source i interrupt request is pending
On write, 1 = software source i interrupt request

Figure 3-8. Interrupt controller request, clear, and mask MMIO registers.

PRELIMINARY SPECIFICATION 3-11

PNX1300/01/02/11 Data Book

Philips Semiconductors

MMIO_BASE
offset: 2 27

0x10 3038 INT_CTL (r/w)

Figure 3-9. Host interrupt control register

Table 3-10. Interrupt source assignments

SEXI\RAEE SSI\CA MODE| SOURCE DESCRIPTION

PCI INTA 0 level | PCI_INTA# pin signal

PCI INTB 1 level | PCI_INTB# pin signal

PCIINTC 2 level | PCI_INTC# pin signal

PCI INTD 3 level | PCI_INTD# pin signal

TRI_USERIRQ 4 either | external general-purpose
pin

TIMER1 5 edge | general-purpose timer

TIMER2 6 edge | general-purpose timer

TIMER3 7 edge | general-purpose timer

SYSTIMER 8 edge |reserved for debugger

VIDEOIN 9 level | video in block

VIDEOOUT 10 level | video out block

AUDIOIN 11 level | audio in block

AUDIOOUT 12 level | audio out block

ICP 13 level |image coprocessor

VLD 14 level | VLD coprocessor

Ssi 15 level | SSlinterface

PCI 16 level PCI BIU (DMA, etc.; see
Table 11-14 for possible
interrupt causes)

nc 17 |level | |2C interface

JTAG 18 level | JTAG interface

t.b.d. 19..24 reserved for future devices

SPDO 25 level | SPDO block

t.b.d. 26..27 reserved for future devices

HOSTCOM 28 edge | (software) host communica-
tion

APP 29 edge | (software) application

DEBUGGER 30 edge | (software) debugger

RTOS 31 edge | (software) RTOS

rent actual state of the pins. Note that the pins have neg-
ative logic (active low) polarity and are of the open
collector output type. Hence the pin voltage is low (ac-
tive) when the logical value set or seen in the INT_CTL
registeris a ‘1.

The assertion and de-assertion of host interrupts is the
responsibility of PNX1300 software.

See also Section 11.6.17, “INT_CTL Register.”

3.7 HOST TO PNX1300 INTERRUPTS

A host CPU can generate an interrupt to PNX1300 in
several ways:

¢« by a PCI MMIO write to IPENDING to assert the
HOSTCOMM interrupt (bit 28)

« by a hardware circuit that asserts one of the interrupt
request pins TRI_USERIRQ, or INTA..INTD.

The first and most common method requires no circuitry
and leaves the interrupt pins available for other purposes.

38 TIMERS

The DSPCPU contains four programmable timer/
counters, all with the same function. The first three
(TIMER1, TIMER2, TIMER3) are intended for general
use. The fourth timer/counter (SYSTIMER) is reserved
for use by the system software and should not be used
by applications.

Each timer has three registers as shown in Figure 3-10.
The MMIO register addresses shown are offset address-
es with respect to the timer's base address.

Each timer/counter can be set to count one of the event
types specified in Table 3-12. Note that the
DATABREAK event is special, in that the timer/counter
may increment by zero, one or two in each clock cycle.
For all other event types, increments are by zero or one.
The CACHE1 and CACHE2 events serve as cache per-
formance monitoring support. The actual event selected
for CACHE1 and CACHE2 is determined by the
MEM_EVENTS MMIO register, see Section 5.7, “Perfor-
mance Evaluation Support.” If a PNX1300 pin signal (VI-
CLK, etc.) is selected as an event, positive-going edges
on the signal are counted.

Each timer increments its value until the modulus is
reached. On the clock cycle where the incremented val-
ue would equal or exceed the modulus, the value wraps
around to zero or one (in the case of an increment by
two), and an interrupt is generated as defined in
Table 3-10. The timer interrupt source mode should be
set as edge-sensitive. No software interrupt acknowl-
edge to the timer device is necessary.

Counting starts and continues as long as the run bit is
set.

Loading a new modulus does not affect the contents of
the value register. If a store operation to either the mod-
ulus or value register results in value and modulus being
the same, no interrupt will be generated. If the run bit is
set, the next value will be modulus+1 or modulus+2, and

PRELIMINARY SPECIFICATION

Philips Semiconductors

DSPCPU Architecture

Timer base offset:

31

19 15 11 7 3 0

0 TMODULUS (riw) | T T "7 "mODULUS' "]
4 TVALUE (r/w) \ " VALLE | |
8 TCTL (riw) \ [PRESCALE] [source | [r]

“PRESCALE": — |

“RUN” bit: ——

Prescale value is
2"PRESCALE, i.e.,
in the range [1..32768]

0 Timer stopped

“SOURCE” select: 1 Timer running

see table Table 3-12

Figure 3-10. Timer register definitions.
Table 3-11. Timer base MMIO address

the counter will have to loop around before an interrupt is

generated.

A modulus value of zero causes a wrap-around as if the
modulus value was 2%2.

On RESET, the TCTL registers are cleared, and the val-
ue of the TMODULUS and TVALUE registers is unde-
fined.

39 DEBUG SUPPORT

This section describes the special debug support offered
by the DSPCPU. Instruction and data breakpoints can be
defined through a set of registers in the MMIO register
space. When a breakpoint is matched, an event is gen-
erated that can be used as a timer source (see Section
3.8, “Timers”). The timer TMODULUS has to be set to
generate a DSPCPU interrupt after the desired number

Instruction Breakpoints

The instruction-breakpoint control register is shown in
Figure 3-11. On RESET, the BICTL register is cleared.
(MMIO-register addresses shown are offset with respect

The instruction-breakpoint address-range registers are
shown in Figure 3-12. After RESET, the value of these
registers is undefined. (MMIO-register addresses shown
are offset with respect to MMIO_BASE.)

When the IC bit in the breakpoint control register is set to
‘1", instruction breakpoints are activated. Any instruction
address issued by the PNX1300 chip is compared
against the low and high address-range values. The IAC
bit in the breakpoint control register determines whether
the instruction address needs to be inside or outside of
the range defined by the low and high address-range
registers. A successful comparison takes place when ei-

TIMER1 MMIO_BASE+0x10,0C00
TIMER2 MMIO_BASE+0x10,0C20
TIMER3 MMIO_BASE+0x10,0C40
SYSTIMER MMIO_BASE+0x10,0C60
Table 3-12. Timer source selections
of breakpoint matches.
Source
Source Name Bits Source Description 391
Value
CLOCK 0 CPU clock
PRESCALE 1 prescaled CPU clock
TRI_TIMER_CLK 2 external clock pin to MMIO_BASE.)
DATABREAK 3 data breakpoints
INSTBREAK 4 instruction breakpoints
CACHEL1 5 cache event 1
CACHE2 6 cache event 2
VI_CLK 7 video in clock pin
VO_CLK 8 video out clock pin
Al_WS 9 audio in word strobe pin
AO_WS 10 audio out word strobe pin
SSI_RXFSX 11 SSi receive frame sync pin
SSI_102 12 SSI transmit frame sync pin
— 13-15 undefined
ther:

¢ IAC ="'0" and low < iaddr < high, or
¢ IAC ='1" and iaddr < low or iaddr > high.

On a successful comparison, an instruction breakpoint
event is generated, which can be used as a clock input
to a timer. After counting the programmed number of in-
struction breakpoint events, the timer will generate an in-
terrupt request.

PRELIMINARY SPECIFICATION 3-13

PNX1300/01/02/11 Data Book

Philips Semiconductors

MMIO_BASE
offset: a1 27 23 ELN 15 a1 T 3 0
0x10 1000 BICTL (r/w) \ |] lic]
‘IAC’ Instruction address control: |
0 Breakpoint if address inside range ‘IC" Instruction control bit:
1 Breakpoint if address outside range 0 Disable instruction breakpoints
1 Enable instruction breakpoints
Figure 3-11. Instruction-breakpoint control register.
MMIO_BASE
offset: 31 27 2 IET I - T £ i 3 0
0x10 1004 BINSTLOW (r/w) ‘ Address Range Start ‘
0x101008 BINSTHIGH (riw) | " Address Range End |
Figure 3-12. Instruction-breakpoint address-range registers.
MMIO_BASE
offset: a1 27 23 LN - S i 3 0
0x10 1030 BDATAALOW (r/w) ‘ Address Range Start ‘
0x101034 BDATAAHIGH (r/w) | "Address Range End |
0x101038 BDATAVAL (rhw) | Data Breakpoint Value |
0x10103C BDATAMASK (r/w) | Data Breakpoint Value Mask |

Figure 3-13. Data-breakpoint address-range and value-compare registers.

3.9.2

The data-breakpoint address-range and compare-value
registers are shown in Figure 3-13. After RESET, the val-
ue of the data breakpoint registers is undefined. (MMIO-
register addresses shown are offset with respect to
MMIO_BASE.)

The data-breakpoint control register is shown in
Figure 3-14. On RESET, the BDCTL register is cleared.
(The register address shown is offset with respect to
MMIO_BASE.)

Data Breakpoints

When the DC bits in the data breakpoint control register
are not set to ‘0’, data breakpoints are activated. When
the value of the DC bitsis ‘1’ or ‘3’, any data address from
load operations (if the BL bit is set) and/or store opera-
tions (if the BS bit is set) issued by the DSPCPU is com-
pared against the low and high address-range values.
The DAC bit in the breakpoint control register determines
whether data addresses need to be inside or outside of
the range defined by the low and high address-range
registers. A successful comparison occurs when either:

« DAC ='0" and low < daddr < high, or
« DAC ='1" and daddr < low or daddr > high.

MMIO_BASE

offset: 31 27

0x101020 BDCTL (r/w) L T ‘

3 ‘0
eslec| oc |

7
[[

‘DVC’ Data Value Control:

0 Breakpoint if data equal
1 Breakpoint if data not equal

‘BS’ Break on Store:

ot |
‘DAC’ Data Address Control:

0 Breakpointif address inside range
1 Breakpointif address outside range

0 Don't check data stores
1 Do check data stores

‘DC’ Data Control:

‘BL’ Break on Load:
0 Don't check data loads
1 Do check data loads

0 No checking

1 Check data addresses

2 Check data values

3 Check data value and addresses

Figure 3-14. Data-breakpoint control register.

3-14 PRELIMINARY SPECIFICATION

Philips Semiconductors

DSPCPU Architecture

Note that this comparison works for all addresses re-
gardless of the aperture to which they belong. When the
value of the DC bits is ‘2’ or ‘3’, any data value from load
operations (if the BL bit is set) and/or store operations (if
the BS bit is set) issued by the PNX1300 CPU is com-
pared against the value in the BDATAVAL register. Only
the bits for which the corresponding BDATAMASK regis-
ter bits are set to ‘1’ will be used in the comparison. The
DVC bit in the breakpoint control register determines
whether the data value needs to be equal or not equal to

the comparison value. A successful comparison occurs
when either of the following are true:

« DVC = ‘0’ and (data & BDATAMASK) = (BDATAVAL
& BDATAMASK).

« DVC = ‘1 and (data & BDATAMASK) != (BDATAVAL
& BDATAMASK).

Note: use a nonzero datamask or the resultis undefined.

When a successful comparison has taken place, a data
breakpoint event is generated, which can be used as a
clock input to a timer. After counting the set number of
data breakpoint events, the timer will generate an inter-
rupt request.

When the value of the DC bits is ‘3, a data breakpoint
event is generated if and only if a successful comparison
occurs on both address and data simultaneously.

Note that up to two data breakpoint events can occur per
clock cycle, due to the dual load/store capability of the
CPU and data cache.

PRELIMINARY SPECIFICATION 3-15

PNX1300/01/02/11 Data Book Philips Semiconductors

3-16 PRELIMINARY SPECIFICATION

Custom Operations for Multimedia

Chapter 4

by Gert Slavenburg, Pieter v.d. Meulen, Yong Cho, Sang-Ju Park

41 CUSTOM OPERATIONS OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

Custom operations in the PNX1300 DSPCPU architec-
ture are specialized, high-function operations designed
to dramatically improve performance in important multi-
media applications. When properly incorporated into ap-
plication source code, custom operations enable an ap-
plication to take advantage of the highly parallel
PNX1300 microprocessor implementation. Achieving a
similar performance increase through other means—
e.g., executing a higher number of traditional micropro-
cessor instructions per cycle—would be prohibitively ex-
pensive for PNX1300's low-cost target applications.

Custom operations are simple to understand and consis-
tent in their definition, but their unusual functions make it
difficult for automatic code generation algorithms to use
them effectively. Consequently, custom operations are
inserted into source code by the programmer. To make
this process as painless as possible, custom operation
syntax is consistent with the C programming language,
and, just as with all other operations generated by the
compiler, the scheduler takes care of register allocation,
operation packing, and flow analysis.

41.1

For both general-purpose and embedded microproces-
sor-based applications, programming in a high-level lan-
guage is desirable. To effectively support optimizing
compilers and a simple programming model, certain mi-
croprocessor architecture features are needed, such as
a large, linear address space, general-purpose registers,
and register-to-register operations that directly support
the manipulation of linear address pointers. A common
choice in microprocessor architectures is 32-bit linear
addresses, 32-bit registers, and 32-bit integer opera-
tions. PNX1300 is such a microprocessor architecture.

Custom Operation Motivation

For the data manipulation in many algorithms, however,
32-bit data and operations are wasteful of expensive sil-
icon resources. Important multimedia applications, such
as the decompression of MPEG video streams, spend
significant amounts of execution time dealing with eight-
bit data items. Using 32-bit operations to manipulate
small data items makes inefficient use of 32-bit execution
hardware in the implementation. If these 32-bit resources
could be used instead to operate on four eight-bit data
items simultaneously, performance would be improved

by a significant factor with only a tiny increase in imple-
mentation cost.

Getting the highest execution rate from standard micro-
processor resources is one of the motivations behind
custom operations in PNX1300. A range of custom oper-
ations is provided that each processes—simultaneous-
ly—four 8-bit or two 16-bit data items. There is little cost
difference between a standard 32-bit ALU and one that
can process either one pair of 32-bit operands or four
pairs of eight-bit operands, but there is a big perfor-
mance difference for PNX1300’s target applications.

PNX1300’s custom operations go beyond simply making
the best use of standard resources. Some custom oper-
ations combine several simple operations. These combi-
nations are tailored specifically to the needs of important
multimedia applications. Some high-function custom op-
erations eliminate conditional branches, which helps the
scheduler make effective use of all five operation slots in
each PNX1300 instruction. Filling up all five slots is es-
pecially important in the inner loops of computational in-
tensive multimedia applications.

In short, custom operations help PNX1300 reach its
goals of extremely high multimedia performance at the
lowest possible cost.

41.2

Table 4-1 and Table 4-2 contain two listings of the cus-
tom operations available in the PNX1300 architecture.
Table 4-1 groups the custom operations by type of func-
tion while Table 4-2 lists the operations by operand size.
For more detailed information about the custom opera-
tions, Appendix A, “PNX1300/01/02/11 DSPCPU Opera-
tions.”

Introduction to Custom Operations

Some operations exist in several versions that differ in
the treatment of their operands and results, and the mne-
monics for these versions make it easy to select the ap-
propriate operation. For example, the sum of products
operations all have “fir" in their mnemonics; the prefix
and suffix of the mnemonic expresses the treatment of
the operands and result. The ifir8ii operation treats both
of its operands as signed (ifir8ii) and produces a signed
result (ifir8ii). The ifir8iu operation treats its first operand
as signed (ifir8iu), the second as unsigned (ifir8i u), and
produces a signed result (ifir8iu). The ume8ii operation
implements an eight-bit motion-estimation; it treats both
operands as signed but produces an unsigned result.

The operations beginning with “dsp” implement a clip-
ping (sometimes called saturating) function before stor-

PRELIMINARY SPECIFICATION 4-1

PNX1300/01/02/11 Data Book

Philips Semiconductors

Table 4-1. Key Multimedia Custom Operations Listed

by Function Type

ing the result(s) in the destination register. Otherwise,
their naming follows the rules given above where appro-
priate. For example, the dspuquadaddui operation imple-

Eunction Custom Op Description ments fou_r_8-bit additiqns; it treats the first operand of
DSP Jsoab Ciioned sianed 32-it absolut each addition as unsigned, the second operand as
absolute Spiabs Va'l'a';e signed Se-bit absolute signed, and produces an unsigned result for each addi-
value - - tion. Each result, which is computed with no loss of pre-
dspidualabs Dual clipped absolute values of cision, is clipped into the representable range of a byte
signed 16-bit halfwords (0..255)
Shift dualasr dual-16 arithmetic shift right
Clip dualiclipi dual-16 clip signed to signed Table 4-2. Key Multimedia Custom Operations Listed
dualuclipi dual-16 clip signed to unsigned by Operand Size
Min,max | quadumax Unsigned bytewise quad max
quadumin Unsigned bytewise quad min Op. Size Custom Op Description
DSP add | dspiadd Clipped signed 32-bit add 32-bit dspiabs Clipped signed 32-bit abs value
dspuadd Clipped unsigned 32-bit add dspiadd Clipped signed 32-bit add
dspidualadd Dual clipped add of signed 16- dspuadd Clipped unsigned 32-bit add
bit halfwords dspimul Clipped signed 32-bit multiply
dspuquadaddui | Quad clipped add of unsigned/ dspumul Clipped unsigned 32-bit multi-
signed bytes |
DS|P' | dspimul Clipped signed 32-bit multiply dspisub Clipped signed 32-bit subtract
multiply Fgspumul Clipped unsigned 32-bit multi- dspusub Clipped unsigned 32-bit sub-
ply tract
dspidualmul Dual clipped multiply of signed 16-bit mergeduall6lsb | Merge dual-16 least-significant
16-bit halfwords bytes
DSBT . dspisub Clipped signed 32-bit subtract dualasr dual-16 arithmetic shift right
subtrac dspusub flliptped unsigned 32-bit sub- dualiclipi dual-16 clip signed to signed
- rac - - dualuclipi dual-16 clip signed to unsigned
dspidualsub Dual clipped subtract of signed - - - -
16-bit halfwords dspidualmul Dual clipped multiply of signed
— - 16-bit halfwords
Sum of ifirl6 Signed sum of products of - -
products signed 16-bit halfwords dspidualabs Qual cI|ppeq absolute values of
— Sianed oroducts of signed 16-bit halfwords
et lgned Sum oF products o dspidualadd Dual clipped add of signed 16-
signed bytes
— Sianed oroducts of bit halfwords
ifir8iu igned sum of products o - - -
; ; dspidualsub Dual clipped subtract of signed
d/ d byt
: Signeciunsigned bytes 16-bit halfwords
ufirlé Unsigned sum of products of e Signed sum of products of
' unS|gned 16-bit halfwords signed 16-bit halfwords
ufirBuu Unsigned sum of products of - -
unsigned bytes ufirlé Unsigned sum of products of
v Juaieisn T JUal16 loastsianificant unsigned 16-bit halfwords
paecrlge, mergedualiols by?(ra%e ual-26 least-signiiican pack16lsb Pack least-significant 16-bit
b v oastsiamficantb halfwords
Mmerge’s erge leas -S|.gn|. |.can ytes packl6msb Pack most-significant 16-bit
mergemsb Merge most-significant bytes halfwords
pack16lsb Pack least-significant 16-bit
halfwords
pack16msb Pack most-significant 16-bit
halfwords
packbytes Pack least-significant bytes
Byte quadavg Unsigned byte-wise quad aver-
averages age
Byte quadumulmsb Unsigned quad 8-bit multiply
multiplies most significant
Motion ume8ii Unsigned sum of absolute val-
estima- ues of signed 8-bit differences
tion umesuu Unsigned sum of absolute val-
ues of unsigned 8-bit differ-
ences
4-2 PRELIMINARY SPECIFICATION

Philips Semiconductors

Custom Operations for Multimedia

Table 4-2. Key Multimedia Custom Operations Listed

by Operand Size

Op. Size Custom Op Description
8-bit quadumax Unsigned bytewise quad max

quadumin Unsigned bytewise quad min

dspuquadaddui | Quad clipped add of unsigned/
signed bytes

ifir8ii Signed sum of products of
signed bytes

ifir8iu Signed sum of products of
signed/unsigned bytes

ufir8uu Unsigned sum of products of
unsigned bytes

mergelsb Merge least-significant bytes

mergemsb Merge most-significant bytes

packbytes Pack least-significant bytes

quadavg Unsigned byte-wise quad aver-
age

quadumulmsb Unsigned quad 8-bit multiply
most significant

ume8ii Unsigned sum of absolute val-
ues of signed 8-bit differences

ume8uu Unsigned sum of absolute val-
ues of unsigned 8-bit differ-
ences

413

The next three sections illustrate the advantages of using
custom operations. Also, the more complex examples il-
lustrate how custom operations can be integrated into
application code by providing listings of C-language pro-
gram fragments. The examples progress in complexity
from simple to intricate; the most interesting examples
are taken from actual multimedia codes, such as MPEG
decompression.

Example Uses of Custom Ops

42 EXAMPLE 1: BYTE-MATRIX
TRANSPOSITION

The goal of this example is to provide a simple, introduc-
tory illustration of how custom operations can significant-
ly increase processing speed in small kernels of applica-
tions. As in most uses of custom operations, the power
of custom operations in this case comes from their ability
to operate on multiple data items in parallel.

Imagine that our task is to transpose a packed, 4-by-4
matrix of bytes in memory; the matrix might, for example,
contain 8-bit pixel values. Figure 4-1 illustrates both the
organization of the matrix in memory and the task to be
performed in standard mathematical notation.

Performing this operation with traditional microprocessor
instructions is straight forward but time consuming. One
way to perform the manipulation is to perform 12 load-
byte instructions (since only 12 of the 16 bytes need to
be repositioned) and 12 store-byte instructions that place
the bytes back in memory in their new positions. Another
way would be to perform four load-word instructions, re-

Memory

Location
31‘ ; ‘0 31‘ ; ‘0

nt0:{a b c d a e i m

O Y E— b f j'n

n+8: i‘j‘k‘l C‘g‘k‘o

n+12:m‘n‘o‘p d‘h‘l‘p
Row Major Column Major
abcd ae im
e fgh Transpose b f jn
i j k| cgko
mnop dhlp

Figure 4-1. Byte-matrix transposition. Top shows
byte matrices packed into memory words; bottom
shows mathematical matrix representation.

position the bytes in registers, and then perform four
store-word instructions. Unfortunately, repositioning the
bytes in registers would require a large number of in-
structions to properly shift and mask the bytes. Perform-
ing the 24 loads and stores makes implicit use of the
shifting and masking hardware in the load/store units and
thus yields a shorter instruction sequence.

The problem with performing 24 loads and stores is that
loads and stores are inherently slow operations because
they must access at least the cache and possibly slower
layers in the memory hierarchy. Further, performing byte
loads and stores when 32-bit word-wide accesses run
just as fast wastes the power of the cache/memory inter-
face. We would prefer a fast algorithm that takes full ad-
vantage of cache/memory bandwidth while not requiring
an inordinate number of byte-manipulation instructions.

PNX1300 has instructions that merge and pack bytes
and 16-bit halfwords directly and in parallel. Four of
these instructions can be applied in this case to speed up
the manipulation of bytes that are packed into words.

Figure 4-2 shows the application of these instructions to
the byte-matrix transposition problem, and the left side of
Figure 4-3 shows a list of the operations needed to im-
plement the matrix transpose. When assembled into ac-
tual PNX1300 instructions, these custom operations
would be packed as tightly as dependencies allow, up to
five operations per instruction.

Note that a programmer would not need to program at
this level (PNX1300 assembler). The matrix transpose
would be expressed just as efficiently in C-language
source code, as shown on the right side of Figure 4-3.
The low-level code is shown here for illustration purpos-
es only.

The first sequence of four load-word operations in
Figure 4-3 brings the packed words of the input matrix
into registers R10, R11, R12, and R13. The next se-
guence of four merge operations produces intermediate
results into registers R14, R15, R16, and R17. The next

sequence of four pack operations could then replace the
original operands or place the transposed matrix in sep-
arate registers if the original matrix operands were need-

PRELIMINARY SPECIFICATION 4-3

PNX1300/01/02/11 Data Book

Philips Semiconductors

1d32d(0) r100 — rlo0
1d32d(4) rl100 — rill
1d32d(8) rl100 — ril2
1d32d(12) r100 — rl3
mergemsb rl0 rll — rl4
mergemsb rl2 rl3 — rilb5
mergelsb rl0 rll — rlé
mergelsb rl2 rl3 — rl7

packlémsb rl4 rl5 — rl8
packlélsb rl4 rl5 — rl9
packlémsb rlé rl7 — r20
packlélsb rlé rl7 — r21
st32d(0) rl0l r1s8
st32d(4) rl0l rl9
st32d(8) rl0l r20
st32d(12) rl101 r21

char matrix[4] [4];

int *m = (int *) matrix;

temp0 = MERGEMSB (m[0], m[1]);
templ = MERGEMSB (m[2], m[3]);
temp2 = MERGELSB(m[0], m[1]);
temp3 = MERGELSB(m[2], m[3]);
m[0] = PACK16MSB(temp0O, templ);
m[1l] = PACK16LSB(temp0O, templ);
m([2] = PACK16MSB (temp2, temp3);
m[3] = ()i

PACK16LSB (temp2, temp3

Figure 4-3. On the left is a complete list of operations to perform the byte-matrix transposition of Figure 4-1
and Figure 4-2. On the left is an equivalent C-language fragment.

ed for further computations (the PNX1300 optimizing C
compiler performs this analysis automatically). In this ex-
ample, the transpose matrix is placed in registers R18,
R19, R20, and R21. The final four store-word operations
put the transposed matrix back into memory.

Thus, using the PNX1300 custom operations, the byte-
matrix transposition requires four load-word operations
and four store-word operations (the minimum possible)
and eight register-to-register data-manipulation opera-
tions. The result is 16 operations, or byte-matrix transpo-
sition at the rate of one operation per byte.

While the advantage of the custom-operation-based al-
gorithm over the brute-force code that uses 24 load- and
store-byte instruction seems to be only eight operations
(a 33% reduction), the advantage is actually much great-
er. First, using custom operations, the number of memo-
ry references is reduced from 24 to eight (a factor of
three). Since memory references are slower than regis-
ter-to-register operations (such as the custom operations
in this example), the reduction in memory references is
significant.

Further, the ability of the PNX1300 VLIW compilation
system to exploit the performance potential of the
PNX1300 microprocessor hardware is enhanced by the
custom-operation-based code. This is because it is eas-
ier for the compilation system to produce an optimal
schedule (arrangement) of the code when the number of
memory references is in balance with the number of reg-
ister-to-register operations. The PNX1300 CPU (like all
high-performance microprocessors) has a limit on the

number of memory references that can be processed in
a single cycle (two is the current limit). A long sequence
of code that contains only memory references can result
in empty operation slots in the long PNX1300 instruc-
tions. Empty operation slots waste the performance po-
tential of the PNX1300 hardware.

As this example has shown, careful use of custom oper-
ations has the potential to not only reduce the absolute
number of operations needed to perform a computation
but can also help the compilation system produce code
that fully exploits the performance potential of the
PNX1300 CPU.

43 EXAMPLE 2: MPEG IMAGE
RECONSTRUCTION

The complete MPEG video decoding algorithm is com-
posed of many different phases, each with computational
intensive kernels. One important kernel deals with recon-
structing a single image frame given that the forward-
and backward-predicted frames and the inverse discrete
cosine transform (IDCT) results have already been com-
puted. This kernel provides an excellent opportunity to il-
lustrate of the power of PNX1300's specialized custom
operators.

In the code fragments that follow, the backward-predict-
ed block is assumed to have been computed into an ar-
ray back[], the forward-predicted block is assumed to
have been computed into forward[], and the IDCT results
are assumed to have been computed into idct[].

Row Major
abecd mergemsb—»[a
e f gh
i j k| mergemsb—b[i
mn o p

mergelsb —» |:c

mergelsb —»[k

Column Major
eb f] packl6msb —»|a e i m
b f jn
m j n:| pack16lsb / cgko
dhlp

g d h] pack16msb7(

o | p:| pack16lsb

Figure 4-2. Application of merge and pack instructions to the byte-matrix transposition of Figure 4-1.

4-4 PRELIMINARY SPECIFICATION

Philips Semiconductors

Custom Operations for Multimedia

void reconstruct (unsigned char *back,

unsigned char *forward,
char *idct,
unsigned char *destination)

int i, temp;

{

if (temp > 255)
temp = 255;
else if (temp < 0)
temp = 0;

}

for (1 = 0; 1 < 64; i += 1)

temp = ((back[i] + forward[i] + 1) >> 1) + idct[i];

destination[i] = temp;

Figure 4-4. Straightforward code for MPEG frame reconstruction.

A straightforward coding of the reconstruction algorithm
might look as shown in Figure 4-4. This implementation
shares many of the undesirable properties of the first ex-
ample of byte-matrix transposition. The code accesses
memory a byte at a time instead of a word at a time,
which wastes 75% of the available bandwidth. Also, in
light of the many quad-byte-parallel operations intro-
duced in Section 4.1.2, “Introduction to Custom Opera-
tions,” it seems inefficient to spend three separate addi-
tions and one shift to process a single eight-bit pixel.
Perhaps even more unfortunate for a VLIW processor
like PNX1300 is the branch-intensive code that performs
the saturation testing; eliminating these branches could
reap a significant performance gain.

Since MPEG decoding is the kind of task for which
PNX1300 was created, there are two custom opera-
tions—quadavg and dspuquadaddui—that exactly fit this
important MPEG kernel (and other kernels). These cus-
tom operations process four pairs of 8-bit pixel values in
parallel. In addition, dspuquadaddui performs saturation
tests in hardware, which eliminates any need to execute
explicit tests and branches.

For readers familiar with the details of MPEG algorithms,
the use of eight-bit IDCT values later in this example may
be confusing. The standard MPEG implementation calls
for nine-bit IDCT values, but extensive analysis has
shown that values outside the range [-128..127] occur
so rarely that they can be considered unimportant. Pur-
suant to this observation, the IDCT values are clipped
into the eight-bit range [-128..127] with saturating arith-
metic before the frame reconstruction code runs. The as-
sumption that this saturation occurs permits some of
PNX1300’s custom operations to have clean, simple def-
initions.

The first step in seeing how custom operations can be of
value in this case, is to unroll the loop by a factor of four.
The unrolled code is shown in Figure 4-5. This creates
code that is parallel with respect to the four pixel compu-
tations. As it is easily seen in the code, the fourgroups of
computations (one group per pixel) do not depend on
each other.

After some experience is gained with custom operations,
it is not necessary to unroll loops to discover situations
where custom operations are useful. Often, a good pro-
grammer with knowledge of the function of the custom
operations can see by simple inspection opportunities to
exploit custom operations.

To understand how quadavg and dspuquadaddui can be
used in this code, we examine the function of these cus-
tom operations.

The quadavg custom operation performs pixel averaging
on four pairs of pixels in parallel. Formally, the operation
of quadavg is as follows:

quadavg rscrl rsrc2 -> rdest

takes arguments in registers rsrcl and rsrc2, and it com-
putes a result into register rdest. rsrcl = [abcd], rsrc2 =
[wxyz], and rdest = [pgrs] where a, b, ¢, d, w, X, Yy, z, p, g,
r, and s are all unsigned eight-bit values. Then, quadavg
computes the output vector [pgrs] as follows:

p=(a+w+1) >>1
g= (b +x+ 1) >>1
r=(c+y+1) >>1
s =(d+2z+ 1) >>1

The pixel averaging in Figure 4-5 is evident in the first
statement of each of the four groups of statements. The
rest of the code—adding idct[i] value and performing the
saturation test—can be performed by the dspuquadad-
dui operation. Formally, its function is as follows:

dspuquadaddui rsrcl rsrc2 -> rdest

takes arguments in registers rsrcl and rsrc2, and it com-
putes a result into register rdest. rsrcl = [efgh], rsrc2 =
[stuv], and rdest = [ijkl] where e, f, g, h, i, j, k, and | are
unsigned 8-bit values; s, t, u, and v are signed 8-bit val-
ues. Then, dspuquadaddui computes the output vector
[ijkl] as follows:

i1 = uclipi(e + s, 255)
j = uclipi(f + t, 255)
k = uclipi(g + u, 255)
1 = uclipi(h + v, 255)

The uclipi operation is defined in this case as it is for the
separate PNX1300 operation of the same name de-
scribed in Appendix A, “PNX1300/01/02/11 DSPCPU
Operations,”. Its definition is as follows:

PRELIMINARY SPECIFICATION 4-5

PNX1300/01/02/11 Data Book Philips Semiconductors

void reconstruct (unsigned char *back,
unsigned char *forward,
char *idct,
unsigned char *destination)

int i, temp;

for (i = 0; 1 < 64; i += 4)

destination[i+0] = temp;

destination[i+1l] = temp;

destination[i+2] = temp;

destination[i+3] = temp;

}

temp = ((back[i+0] + forward[i+0] + 1) >> 1) + idct[i+0];
if (temp > 255) temp = 255;
else if (temp < 0) temp =

temp = ((back[i+1] + forward[i+1l] + 1) >> 1) + idct[i+1];
if (temp > 255) temp = 255;
else if (temp < 0) temp =

temp = ((back[i+2] + forward[i+2] + 1) >> 1) + idct[i+2];
if (temp > 255) temp = 255;
else if (temp < 0) temp =

temp = ((back[i+3] + forward[i+3] + 1) >> 1) + idct[i+3];
if (temp > 255) temp = 255;
else if (temp < 0) temp =

Figure 4-5. MPEG frame reconstruction code using PNX1300 custom operations; compare with Figure 4-4.

uclipi (m, n)

if (m < 0) return 0;
else if (m > n) return n;
else return m;

To make is easier to see how these operations can sub-
sume all the code in Figure 4-5, Figure 4-6 shows the

same code rearranged to group the related functions.

Now it should be clear thatthe quadavg operation can re-
place the first four lines of the loop assuming that we can
get the individual 8-bit elements of the back[] and for-

ward[] arrays positioned correctly into the bytes of a 32-

bit word. That, of course, is easy: simply align the byte ar-

rays on word boundaries and access them with word (in-
teger) pointers.

Similarly, it should now be clear that the dspuquadaddui
operation can replace the remaining code (except, of
course, for storing the result into the destination[] array)
assuming, as above, that the 8-bit elements are aligned
and packed into 32-bit words.

Figure 4-7 shows the new code. The arrays are now ac-
cessed in 32-bit (int-sized) chunks, the loop iteration con-
trol has been modified to reflect the ‘four-at-a-time’ oper-
ations, and the quadavg and dspuquadaddui operations
have replaced the bulk of the loop code. Finally,
Figure 4-8 shows a more compact expression of the loop
code, eliminating the temporary variable. Note that
PNX1300 C compiler does the optimization by itself.

Again, note that the code in Figure 4-7 and Figure 4-8
assumes that the character arrays are 32-bit word

aligned and padded if necessary to fill an integral number
of 32-bit words.

The original code required three additions, one shift, two
tests, three loads, and one store per pixel. The new code
using custom operations requires only two custom oper-
ations, three loads, and one store forfour pixels, which is
more than a factor of siximprovement. The actual perfor-
mance improvement can be even greater depending on
how well the compiler is able to deal with the branches in
the original version of the code, which depends in part on
the surrounding code. Reducing the number of branches
almost always improves the chances of realizing maxi-
mum performance on the PNX1300 CPU.

The code in Figure 4-8 illustrates several aspects of us-
ing custom operations in C-language source code. First,
the custom operations require no special declarations or
syntax; they appear to be simple function calls. Second,
there is no need to explicitly specify register assignments
for sources, destinations, and intermediate results; the
compiler and scheduler assign registers for custom oper-
ations just as they would for built-in language operations
such as integer addition. Third, the scheduler packs cus-
tom operations into PNX1300 VLIW instructions as effec-
tively as it packs operations generated by the compiler
for native language constructs.

Thus, although the burden of making effective use of
custom operations falls on the programmer, that burden
consists only of discovering the opportunities for exploit-
ing the operations and then coding them using standard
C-language notation. The compiler and scheduler take
care of the rest.

4-6 PRELIMINARY SPECIFICATION

Philips Semiconductors

Custom Operations for Multimedia

void reconstruct (unsigned char *back,
unsigned char *forward,
char *idct,
unsigned char *destination)
{
int i, tempO, templ, temp2, temp3;
for (i = 0; 1 < 64; i += 4)
{
temp0 = ((back[i+0] + forward[i+0] + 1) >> 1);
templ = ((back[i+1] + forward[i+1] + 1) >> 1);
temp2 = ((back[i+2] + forward[i+2] + 1) >> 1);
temp3 = ((back[i+3] + forward[i+3] + 1) >> 1);
temp0 += idct [1+0];
if (tempO0 > 255) tempd = 255;
else if (temp0 < 0) tempO = 0;

templ += idct [1+1];
if (templ > 255)
else if (templ < 0)

temp2 += idct [1+2];
if (temp2 > 255)
else if (temp2 < 0)

temp3 += idct [1+3];

templ
templ = 0;

temp2
temp2 = 0;

= 255;

= 255;

if (temp3 > 255) temp3 =
else if (temp3 < 0) temp3 =

255;
0;

destination[i+0]
destination[i+1]
destination[i+2]
destination [i+3]

tempO;
templ;
temp2;
temp3;

}

Figure 4-6. Re-grouped code of Figure 4-5.

void reconstruct (unsigned char *back,
unsigned char *forward,
char *idct,

unsigned char *destination)

int 1, temp;

int *i_back = (int *) back;

int *i forward = (int *) forward;

int *i idect = (int *) idct;

int *i dest = (int *) destination;

for (i = 0; i < 16; i += 1)

{
temp = QUADAVG (i_back[i], i forward[i]);
temp = DSPUQUADADDUI (temp, 1i_idct[il]);
i_dest[i] = temp;

}

Figure 4-7. Using the custom operation dspquadaddui to speed up the loop of Figure 4-6.

44 EXAMPLE 3: MOTION-ESTIMATION

KERNEL

Another part of the MPEG coding algorithm is motion es-
timation. The purpose of motion estimation is to reduce
the cost of storing a frame of video by expressing the
contents of the frame in terms of adjacent frames. A giv-
en frame is reduced to small blocks, and a subsequent
frame is represented by specifying how these small
blocks change position and appearance; usually, storing
the difference information is cheaper than storing a

whole block. For example, in a video sequence where
the camera pans across a static scene, some frames can
be expressed simply as displaced versions of their pre-
decessor frames. To create a subsequent frame, most
blocks are simply displaced relative to the output screen.

The code in this example is for a match-cost calculation,
a small kernel of the complete motion-estimation code.
As with the previous example, this code provides an ex-
cellent example of how to transform source code to make
the best use of PNX1300's custom operations.

PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book

Philips Semiconductors

void reconstruct (unsigned char *back,
unsigned char *forward,
char *idct,
unsigned char *destinati
int 1i;
back;
forward;
idct;
destination;

int
int
int
int

*i back
*i forward
*i idct
*i dest

*
*
*
*

)
)
)
)

i < 16; 1 += 1)
= DSPUQUADADDUI (QUADAVG

for (i = 0;
i dest[i]

}

on)

(i_back[i], i forward[i]), i_idct[i]);

Figure 4-8. Final version of the frame-reconstruction co

de.

unsigned char A[16] [16];
unsigned char B[16] [16];

for (row 0; row < 16; row += 1)

for (col 0; col < 16; col

cost += abs(A[row] [col]

+= 1)

- Blrow] [col]);

Figure 4-9. Match-cost loop for MPEG motion estimation.

unsigned char A[16][16];
unsigned char B[16] [16];

for (row

= 0; row < 16; row += 1)
for (col = 0; col < 16; col += 4
cost += abs(A[row] [col+0] -
cost += abs(A[row] [col+1l] -
cost += abs(A[row] [col+2] -
cost += abs(A[row] [col+3] -

)

B[row] [col+0
B[row] [col+1l
B[row] [col+2
B[row] [col+3

i
i

i

1)
1)
1)
1)

i

Figure 4-10. Unrolled, but not parallel, version of the loop from Figure 4-9.

Figure 4-9 shows the original source code for the match-
cost loop. Unlike the previous example, the codeis not a
self-contained function. Somewhere early in the code,
the arrays A[][] and B[][] are declared; somewhere be-
tween those declarations and the loop of interest, the ar-
rays are filled with data.

44.1

First, we will look at the simplest way to use a PNX1300
custom operation.

A Simple Transformation

We start by noticing that the computation in the loop of

Figure 4-9 involves the absolute value of the difference
of two unsigned characters (bytes). By now, we are fa-

miliar with the fact that PNX1300 includes a number of
operations that process all four bytes in a 32-bit word si-
multaneously. Since the match-cost calculation is funda-
mental to the MPEG algorithm, it is not surprising to find

a custom operation—ume8uu—that implements this op-
eration exactly.

To understand how ume8uu can be used in this case, we
need to transform the code as in the previous example.
Though the steps are presented here in detail, a pro-
grammer with a even a little experience can often per-
form these transformations by visual inspection.

To use a custom operation that processes 4 pixel values
simultaneously, we first need to create 4 parallel pixel
computations. Figure 4-10 shows the loop of Figure 4-9
unrolled by a factor of 4. Unfortunately, the code in the
unrolled loop is not parallel because each line depends
on the one above it. Figure 4-11 shows a more parallel
version of the code from Figure 4-10. By simply giving
each computation its own cost variable and then sum-
ming the costs all at once, each cost computation is com-
pletely independent.

4-8 PRELIMINARY SPECIFICATION

Philips Semiconductors

Custom Operations for Multimedia

unsigned char A[16][16];
unsigned char B[16] [16];

for (row

col += 4)

] —
] —
] —
] —

= 0; row < 16; row += 1)
for (col = 0; col < 16;
cost0 = abs(A[row] [col+0
costl = abs(A[row] [col+l
cost2 = abs(A[row] [col+2
cost3 = abs(A[row] [col+3
cost +=

cost0 + costl + cost2 + cost3;

B[row] [col+0]) ;
Blrow] [col+1]) ;
B[row] [col+2])
B[row] [col+3])

i

i

Figure 4-11. Parallel version of Figure 4-10.

char
char

A[le6] [16];
B[16] [16];

unsigned
unsigned

*CA
*CB

char
char

unsigned
unsigned

A;
B;

for (row = row += 1)

{

0; row < 16;

int rowoffset row * 16;

for (col 0; col < 16; col +=
abs (CA [rowoffset +
abs (CA [rowoffset +
abs (CA [rowoffset +
abs (CA [rowoffset +

= cost0 + costl +

4)

col+0]
col+1]
col+2]
col+3]

cost2 +

- CB[rowoffset
- CB[rowoffset
- CB[rowoffset
- CB[rowoffset

cost3;

Figure 4-13. The loop of Figure 4-11 recoded with one-dimensional array accesses.

Excluding the array accesses, the loop body in
Figure 4-11 is now recognizable as the function per-
formed by the ume8uu custom operation: the sum of 4
absolute values of 4 differences. To use the ume8uu op-
eration, however, the code must access the arrays with
32-bit word pointers instead of with 8-bit byte pointers.

Figure 4-13 shows the loop recoded to access A[][] and
B[][] as one-dimensional instead of two-dimensional ar-
rays. We take advantage of our knowledge of C-lan-
guage array storage conventions to perform this code
transformation. Recoding to use one-dimensional arrays
prepares the code for transformation to 32-bit array ac-
cesses.

(From here on, until the final code is shown, the declara-
tions of the A and B arrays will be omitted from the code
fragments for the sake of brevity.)

unsigned int *IA = (unsigned int *) A;
unsigned int *IB = (unsigned int *) B;
for (i = 0; 1 < 64; 1 += 1)

cost += UME8BUU(IA[i], IBI[il);

Figure 4-12. The loop of Figure 4-14 with the inner
loop eliminated.

Figure 4-14 shows the loop of Figure 4-13 recoded to
use ume8uu. Once again taking advantage of our knowl-
edge of the C-language array storage conventions, the
one-dimensional byte array is now accessed as a one-di-
mensional 32-bit-word array. The declarations of the
pointers IA and IB as pointers to integers is the key, but
also notice that the multiplier in the expression for row
offset has been scaled from 16 to 4 to account for the fact
that there are 4 bytes in a 32-bit word.

Of course, since we are now using one-dimensional ar-
rays to access the pixel data, it is natural to use a single
for loop instead of two. Figure 4-12 shows this stream-
lined version of the code without the inner loop. Since C-
language arrays are stored as a linear vector of values,
we can simply increase the number of iterations of the
outer loop from 16 to 64 to traverse the entire array.

The recoding and use of the ume8uu operation has re-

sulted in a substantial improvement in the performance
of the match-cost loop. In the original version, the code
executed 1280 operations (including loads, adds, sub-
tracts, and absolute values); in the restructured version,
there are only 256 operations—128 loads, 64 ume8uu
operations, and 64 additions. This is a factor of five re-
duction in the number of operations executed. Also, the

PRELIMINARY SPECIFICATION 4-9

PNX1300/01/02/11 Data Book

Philips Semiconductors

unsigned int *IA
unsigned int *IB

(unsigned int *)
(unsigned int *)

for (row = 0; row < 16; row += 1)
int rowoffset = row * 4;
for (col4 = 0; cold < 4; col4

}

+= 1)
cost += UMEBUU(IA[rowoffset + col4], IB[rowoffset + col4]);

A;
B;

Figure 4-14. The loop of Figure 4-13 recoded with 32-bit array accesses and the ume8uu custom operation.

overhead of the inner loop has been eliminated, further
increasing the performance advantage.

442

The code transformations of the previous section
achieved impressive performance improvements, but
given the VLIW nature of the PNX1300 CPU, more can
be done to exploit PNX1300’s parallelism.

The code in Figure 4-12 has a loop containing only 4 op-
erations (excluding loop overhead). Since PNX1300's
branches have a 3-instruction delay and each instruction
can contain up to 5 operations, a fully utilized minimum-
sized loop can contain 16 operations (20 minus loop
overhead).

More Unrolling

The PNX1300 compilation system performs a wide vari-
ety of powerful code transformation and scheduling opti-
mizations to ensure that the VLIW capabilities of the
CPU are exploited. It is still wise, however, to make pro-
gram parallelism explicit in source code when possible.
Explicit parallelism can only help the compiler produce a
fast running program.

To this end, we can unroll the loop of Figure 4-12 some
number of times to create explicit parallelism and help
the compiler create a fast running loop. In this case,
where the number of iterations is a power-of-two, it
makes sense to unroll by a factor that is a power-of-two
to create clean code.

Figure 4-15 shows the loop unrolled by a factor of eight.
The compiler can apply common sub-expression elimi-
nation and other optimizations to eliminate extraneous
operations in the array indexing, but, again, improve-
ments in the source code can only help the compiler pro-
duce the best possible code and fastest-running pro-
gram.

Figure 4-16 shows one way to modify the code for sim-
pler array indexing.

unsigned int *IA
B

(unsigned int *) A;
unsigned int *I B;

= (unsigned int *)
for (1 = 0; 1 < 64; 1 += 8)

{

cost0 = UMESUU(IA[i+0], IB[i+0]);
costl = UMESUU(IA[i+1], IB[i+1]);
cost2 = UMESUU(IA[i+2], IB[i+2]);
cost3 = UMESUU(IA[i+3], IB[1i+3]);
cost4 = UMESUU(IA[i+4], IB[i+4]);
cost5 = UMESUU(IA[i+5], IB[i+5]);
cost6 = UMESUU(IA[i+6], IB[i+6]);
cost7 = UMESUU(IA[i+7], IB[i+7]);

cost += cost0 + costl + cost2 +
cost3 + cost4 + cost5 +
cost6 + cost7;

}

Figure 4-15. Unrolled version of Figure 4-12. This
code makes good use of PNX1300’s VLIW capabili-
ties.

unsigned char A[16] [16];
unsigned char B[16] [16];

unsigned int *IA
B

(unsigned int *) A;
unsigned int *I B

(unsigned int *)

i

for (i = 0; 1 < 64; 1 += 8, IA += 8, IB +=
8)

{

cost0 = UMEBUU(IA[O], IBI[O]);
costl = UMESUU(IA[1], IBI[1]);
cost2 = UMEBUU(IA[2], IB[2]);
cost3 = UMESBUU(IA[3], IBI[3]);
cost4 = UMESUU(IA[4], IBI[4]);
cost5 = UMESUU(IA[5], IBI[5]);
cost6 = UMESUU(IA[6], IBI[6]);
cost7 = UMEBUU(IA[7], IBI[7]);

cost += cost0 + costl + cost2 +
cost3 + cost4 + cost5 +
costé + cost7;

}

Figure 4-16. Code from Figure 4-15 with simplified
array index calculations.

4-10 PRELIMINARY SPECIFICATION

Cache Architecture

Chapter 5

51 MEMORY SYSTEM OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The high-performance video and audio throughput of
PNX1300 is implemented by its DSPCPU and autono-
mous I/O and co-processing units, but the foundation of
this processing is the PNX1300 memory hierarchy. To
get the full potential of the chip’s processing units, the
memory hierarchy must read and write data (and DSP
CPU instructions) fast enough to keep the units busy.

To meet the requirements of its target applications,
PNX1300’s memory hierarchy must satisfy the conflict-
ing goals of low cost, simple system design (e.g., low
parts count), and high performance. Since multimedia
video streams can require relatively large temporary
storage, a significant amount of external DRAM is re-
quired. Minimizing the cost of bulk memory is important.

PNX1300’s memory system achieves a good compro-
mise between cost and performance by coupling sub-
stantial on-chip caches with a glueless interface to syn-
chronous DRAM (SDRAM). SDRAM provides higher
bandwidth than standard DRAM for only a small cost pre-
mium. A block diagram of the memory system is shown
in Figure 5-1. SDRAM permits PNX1300 to use a nar-
rower and simpler interface than would be required to
achieve similar performance with standard DRAM.

Three sets, each has address,

by Eino Jacobs

The separate on-chip data and instruction caches serve
only the DSPCPU since the data access patterns of the
autonomous /O and graphics units exhibit little or no lo-
cality of reference (they access each piece of the multi-
media data stream only once in each operation).

Without the caches, the CPU would not be able to
achieve its performance potential. SDRAM has enough
bandwidth to handle serial streams of multimedia data,
but its bandwidth and latency are insufficient to satisfy
the CPU’s high rate of random data accesses and re-
peated instruction accesses.

Table 5-1. 100-MHz PNX1300 memory bandwidth
parameters

Magnitude Use
2800 MB/s Instruction bandwidth (224 bits/instruction)
800 MB/s Data bandwidth (two 32-bit memory ports)
400 MB/s Main-memory bandwidth (one 32-bit port)

/% opcode, condition, and guard
Three

Table 5-1 shows bandwidth parameters for the PNX1300
DSPCPU and the main-memory interface. Although 400
MB/s is a lot of bandwidth, it is clear that the SDRAM
alone cannot keep up with the CPU’s maximum require-
ments for instructions and data. Luckily, multimedia algo-
rithms resemble other computer programs in terms of lo-
cality of reference, so the on-chip caches typically supply

Internal data highway:
32-bit address, 32-bit
// data

Main SDRAM
Memory Main
Interface Memory

\ Two sets, each has a guard,
opcode, data, and two
address components

|

: L ; Branch 32KB, 8-way
' - Units Instruction
' Cache

| | DeCOMpPressor

| VLIW A\ 224 bits of decompressed

: CPU instruction

‘ - Two 16KB, 8-way
| Memory Data

| < Units Cache

|

|

Main-memory bus:
glueless, SDRAM
control with 32-bit
data

To on-chip
peripherals

Figure 5-1. The main components of the PNX1300 memory system.

PRELIMINARY SPECIFICATION 5-1

PNX1300/01/02/11 Data Book

Philips Semiconductors

the majority of instructions and data to the DSPCPU. The
wide paths to the caches are matched to the bandwidth
requirements of the DSPCPU.

Table 5-2. Summary of memory system
characteristics

Unit Description

Branch units | Branch units execute branch operations. Up to
three branch operations can be executed in
parallel, but the program must guarantee that

only one branch is taken.

Decompres- | Instructions are stored in memory and in the
sion unit instruction cache in a space-saving, com-
pressed format. The decompression unit
expands instructions to their full, 28-byte size
before they are issued to the CPU.
Instruction The instruction cache holds 32 KB, is 8-way
cache set-associative, and has a 64-byte block size.

A miss in a block causes the entire block to be
read from SDRAM. The cache can sustain an
issue rate of one instruction per cycle on
cache hits.

Memory units | Memory units execute load and store opera-
tions. The data cache is dual ported to allow

the memory units to operate concurrently.

Data cache The data cache holds 16 KB, is 8-way set-
associative, has a 64-byte block size, and
implements a copyback, allocate-on-write pol-
icy. A miss in a block causes the entire block
to be read from SDRAM. The cache supports
memory-mapped I/O through non-cacheable
address regions.

Data highway | The on-chip data highway bus serves all on-
chip units. The highway has separate 32-bit
data and address buses. Bus bandwidth is
allocated by the highway arbiter according to

one of several modes.

Main-memory | The main-memory interface contains the data-

interface highway access arbiter, the SDRAM control-
ler, and MMIO logic.

SDRAM main | External SDRAM connects gluelessly to

memory PNX1300 over the 32-bit main-memory bus.

To improve cache behavior and thus program perfor-
mance, the caches have a locking mechanism. In addi-
tion, the instruction cache is coupled with an instruction
decompression unit. The compressed instruction format
improves the cache hit rate and reduces the bus band-
width required between main memory and cache. In-
structions in main memory and cache use the com-
pressed format.

PNX1300's processing units access the external
SDRAM through the on-chip central “data highway” bus.
The highway consists of separate 32-bit address and
data buses, and use of the bus is mediated by the main-
memory interface unit. The main-memory interface con-
tains the SDRAM controller and a central arbiter that de-
termines how much of the available SDRAM memory
bandwidth is allocated to each unit. Unused bandwidth is
always made available to the VLIW CPU for cache refill
and memory accesses that bypass the caches.

Table 5-2 gives a summary description of each compo-
nent of PNX1300’s memory system.

52 DRAM APERTURE

PNX1300 implements a 32-bit linear address space of
bytes. Within that address space, PNX1300 supports
several different apertures for specific purposes. The
DRAM aperture describes the part of the address space
into which the external SDRAM is mapped. SDRAM
must consist of a single, contiguous region of memory,
which is the most practical configuration for PNX1300
systems.

The location and size of the DRAM aperture is defined by
two registers, DRAM_BASE and DRAM_LIMIT. These
registers are both readable and writeable as MMIO reg-
isters and as PCI configuration space registers. The view
of the registers in MMIO space is shown in Figure 5-2.
The view of the registers in PCI configuration space is
described in Chapter 11, “PCI Interface.” In normal oper-
ation, the base address registers are assigned once dur-
ing boot and not changed when the DSPCPU is running.
Refer to Chapter 11, “PCI Interface,” and Chapter 13,
“System Boot,” for a description of this process.

DRAM_LIMIT must be set equal to DRAM_BASE plus
the actual size of SDRAM present. The amount of the
SDRAM is not required to be a power of 2, but it must be
a multiple of 64 KB. Note that the size of the aperture as
set in the PCI configuration space can be larger, be-
cause it must be a power of 2.

A memory operation will access SDRAM if its address
satisfies:

[DRAM_BASE] < address < [DRAM_LIMIT]
Any address outside this range cannot access SDRAM.

When PNX1300 is reset, DRAM_BASE_FIELD is set to
0x0 and DRAM_LIMIT is set to 0x0010 0000 (1-MB
DRAM aperture starting at address 0x0). The boot pro-
cess described in Chapter 13, “System Boot,” overrides
these initial settings.

19 15 11 7 3 0
[o[ofo]o[o[o]o]o[o[o]o]o[o[o[0]o[o]o]o]o]

MMIO_BASE
offset: 2 - 2

0x10 0000 DRAM_BASE (rw) | ' ' DRAM_BASE FIELD

0x10 0004 DRAM_LIMIT (riw) | DRAM_LIMIT FIELD |

—
[o[ofo]o]o]o]o[o]o]o]o]o]0[o]o]o]

Figure 5-2. Formats of the DRAM_BASE and DRAM_LIMIT registers.

5-2 PRELIMINARY SPECIFICATION

Philips Semiconductors

Cache Architecture

53 DATA CACHE

The data cache serves only the DSPCPU and is con-
trolled by two memory units that execute the load and
store operations issued by the DSPCPU. The following
sections describe the data cache and its operation;
Table 5-3 summarizes the important characteristics for
easy reference.

Table 5-3. Summary of data cache characteristics

Characteristic PNX1300 Implementation

Cache size 16 KB

Cache associativity | 8-way set-associative

Block size 64 bytes

Valid bits One valid bit per 64-byte block

Dirty bits One dirty bit per 64-byte block

Miss transfer order | Miss transfers begin with the critical
word first

Replacement poli- | Copyback, allocate on write, hierarchical

cies LRU

Endianness Either little- or big-endian, determined

by PCSW bit

The cache is quasi dual ported; two
accesses can proceed concurrently if
they reference different banks (deter-
mined by bits [4:2] of the computed
addresses)

Ports

Alignment Access must be naturally aligned (32-bit
words on 32-bit boundaries, 16-bit half-
words on 16-bit boundaries); the appro-
priate number of LSBs of un-naturally
aligned addresses are set to zero.

For misaligned stores, PCSW.MSE is
asserted to generate an exception

Partial word opera- | The cache implements 8-bit and 16-bit

53.1

The PNX1300 data cache is 16 KB in size with a 64-byte
block size. Thus, it contains 256 blocks each with its own
address tag. The cache is 8-way set-associative, so
there are 32 sets, each containing 8 tags. A single valid
bit is associated with a block, so each block and associ-
ated address tag is either entirely valid in the cache or in-
valid. On a cache miss, 64 bytes are read from SDRAM
to make the entire block valid.

General Cache Parameters

Each block also contains a dirty bit, which is set whenev-
er a write to the block occurs. Each set contains 10 bits
to support the hierarchical LRU replacement policy.

The geometry of the data cache is available to software
by reading the MMIO register DC_PARAMS. Figure 5-3
shows the format of the DC_PARAMS register;
Table 5-4 lists its field values. The product of block size,
associativity, and number of sets gives the total cache
size (16 KB in this case).

Table 5-4. DC_PARAMS field values

Field Name Value
BLOCK SIZE 64
ASSOCIATIVITY 8
NUMBER_OF_SETS 32

5.3.2

PNX1300 data addresses are mapped onto the data
cache storage structure as shown in Figure 5-4. A data
address is partitioned into four fields as described in
Table 5-5.

Address Mapping

Table 5-5. Data address field partitioning

tions accesses with the same performance as
32-bit accesses Field Adéi'rtess Purpose
its
Operation latency Three cycles for both load and store
operations Byte 1.0 Byte offset within a word for byte or half-
Coherency enforce- | Software uses special operations to word accesses
ment enforce cache coherency Word 5.2 Selects one of the words in a set (one of
Cache locking Up to 1/2 (four out of 8 blocks of each 16 words in the case of PNX1300)
set) of the cache contents can be Set 10..6 | Selects one of the sets in the cache (one
locked; granularity is 64-byte of 32 in the case of PNX1300)
Non-cacheable One non-cacheable aperture in the Tag 31.11 | Compared against address tags of set
region DRAM address space is supported. members
MMIO_BASE
Offset 31\ \27\ T T T \19\ 15\ T T \11 T \7\ T T \3\ T \0
0x10 001C DC_PARAMS (r/o) ‘ ‘ BLOCKSIZE ASSOCIATIVITY NUMBER_OF_SETS
Figure 5-3. Format of the DC_PARAMS register.
31‘ ; ; ‘1110‘ ; ‘6 5‘ ; ‘2 1‘0
Data Cache Address ‘ Tag Set Word ‘ Byte ‘

Figure 5-4. Data cache address partitioning.

PRELIMINARY SPECIFICATION 5-3

PNX1300/01/02/11 Data Book

Philips Semiconductors

5.3.3

When a miss occurs, the data cache fills the block con-
taining the requested word from the critical word first.
The CPU is stalled until the first word is transferred. The
block is then filled up while the CPU keeps running.

Miss Processing Order

534

The cache implements a copyback replacement policy
with one dirty bit per 64-byte block. Thus, when a miss
occurs and the block selected for replacement has its
dirty bit set, the dirty block must be written to main mem-
ory to preserve its modified contents. On PNX1300, the
dirty block is written to memory before the needed block
is fetched.

Replacement Policies, Coherency

Coherency is not maintained in any way by hardware be-
tween the data cache, the instruction cache, and main
memory. Special operations are available to implement
cache coherency in software. See Section 5.6, “Cache
Coherency,” for a discussion of coherency issues.

Write misses are handled with an allocate-on-write poli-
cy—the write that caused the miss stores its data in the
cache after the missing block is fetched into the cache.

The cache implements a hierarchical LRU replacement
algorithm to determine which of the eight elements
(blocks) in a set is replaced. The algorithm partitions the
eight set elements into four groups, each group with two
elements. The hierarchical LRU replacement victim is
determined by selecting the least-recently used group of
two elements and then selecting the least-recently used
element in that group. This hierarchical algorithm yields
performance close to full LRU but is simpler to imple-
ment.

See Section 5.5, “LRU Algorithm,” for a full discussion of
the LRU algorithm.

5.35 Alignment, Partial-Word Transfers,
Endian-ness

The cache implements 32-bit word, 16-bit half-word, and
8-bit byte transfers. All transfers, however, must be to
addresses that are naturally aligned; that is, 32-bit words
must be aligned on 32-bit boundaries, and 16-bit half-
words must be aligned on 16-bit boundaries.

Like other PNX1300 processing units, the CPU has the
capability to use either big- or little-endian byte order. It
is recommended that all units and the CPU run with the
same endian-ness. Detailed endian-ness description
can be found in Appendix C, “Endian-ness.”

5.3.6

To allow two accesses to proceed in parallel, the data
cache is quasi-dual ported. The cache is implemented as
eight banks of single-ported memory, but the hardware
allows each bank to operate independently. Thus, when
the addresses of two simultaneous accesses select two
different banks, both accesses can complete simulta-
neously. Bank selection is determined by the three low-
order address bits [4..2] of each address. Thus, the

Dual Ports

words in a 64-byte cache block are distributed among the
eight blocks, which prevents conflicts between two simul-
taneously issued accesses to adjacent words in a cache
block. The PNX1300 compiling system attempts to avoid
bank conflicts as much as possible.

The dual-ported cache can execute the load and store
opcodes (ild8d, uld8d, ild16d, uld16d, 1d32d, h_st8d,
h_st16d, h_st32d, ild8r, uld8r, ild16r, uld16r, 1d32r,
ild16x, uld16x, 1d32x) in either or both of the two ports.

The special opcodes alloc, dcb, dinvalid, pref, rdtag and
rdstatus can only be executed in the second port, not in
the first port. Whenever any of these special opcodes is
issued in the second port, there should not be a concur-
rent load or store operation in the first. This is a special
scheduling constraint.

5.3.7

The data cache allows the contents of up to one-half of
its blocks to be locked. Thus, on PNX1300, up to 8 KB of
the cache can be used as a high-speed local data mem-
ory. Only four out of eight blocks in any set can be
locked.

Cache Locking

A locked block is never chosen as a victim by the re-
placement algorithm; its contents remain undisturbed un-
til either (1) the block’s locked status is changed explicitly
by software, or (2) a dinvalid operation is executed that
targets the locked block.

Cache locking occurs only for the data in the address
range described by the MMIO registers
DC_LOCK_ADDR and DC_LOCK_SIZE. The granulari-
ty of the address range is one 64-byte cache block. The
MMIO register DC_LOCK_CTL contains the cache-lock-
ing enable bit DC_LOCK_ENABLE. Figure 5-5 shows
the layout of the data-cache lock registers. Locking will
occur for an address if locking is enabled and both of the
following are true:

1. The address is greater than or equal to the value in
DC_LOCK_ADDR.

2. The address is less than the sum of the values in
DC_LOCK_ADDR and DC_LOCK_SIZE.

Programmers (or compilers) must combine all data that
needs to be locked into this single linear address range.

Setting DC_LOCK_ENABLE to ‘1’ causes the following
sequence of events:

1. All blocks that are in cache locations that will be used
for locking are copied back to main memory (if they
are dirty) and removed from the cache.

2. All blocks in the lock range are fetched from main
memory into the cache. If any block in the lock range
was already in the cache, it's first copied backinto
main memory (if it’s dirty) and invalidated.

3. The LRU status of any set that contains locked blocks
is set to the initialization value.

4. Cache locking is activated so that the locked blocks
cannot be victims of the replacement algorithm.

This sequence of events is triggered by writing ‘1’ to
DC_LOCK_ENABLE even if the enable is already set to

5-4 PRELIMINARY SPECIFICATION

Philips Semiconductors

Cache Architecture

MMIO_BASE
offset:

APERTURE_CONTROL

31 27 23 19 15 11 7 6'5 ‘3‘ ; 0
0x100010 DC_LOCK_CTL (rw) [o]o]o]o]o]o]o]o]o]o[o]o[o]o]o]o]o]o]o]o]o]o[o]o]o] ~ | reserved |]

DC_LOCK_ENABLE—

0x100014 DC_LOCK_ADDR (r/w) |

I S A R R S S
DC_LOCK_ADDRESS

[o[ofo]o[o[o]o]o]0[o]o]o[o]o]

0x100018 DC_LOCK_SIZE (r/w)

[Jo[o]olo]o[o]oo[ole]ololo]o]o o]o]o] be idck sze [olololo]o]o]

Figure 5-5. Formats of the registers in charge of data-cache locking.

‘1". Setting DC_LOCK_ENABLE to ‘0O’ causes no action
except to allow the previously locked blocks to be re-
placement victims.

To program a new lock range, the following sequence of
operations is used:

1. Disable cache locking by writing ‘0’ to
DC_LOCK_ENABLE.

2. Define a new lock range by writing to
DC_LOCK_ADDR and DC_LOCK_SIZE.

3. Enable cache locking by writing ‘1’ to
DC_LOCK_ENABLE.

Dirty locked blocks can be written back to main memory
while locking is enabled by executing copyback opera-
tions in software.

Programmer’s note: Software should not execute din-
valid operations on a locked block. If it does, the block
will be removed from the cache, creating a ‘hole’ in the
lock range (and the data cache) that cannot be reused
until locking is deactivated.

Cache locking is disabled by default when PNX1300 is
reset.

The RESERVED field in DC_LOCK_CTL should be ig-
nored on reads and written as all zeroes.

Locking should not be enabled by PCI accesses to the
MMIO registers.

5.3.8 Memory Hole and PCI Aperture
Disable

Bits 6 and 5 in DC_LOCK_CTL comprise the
APERTURE_CONTROL field. This field can be used to
change the memory map as seen by the DSPCPU. The
hardware RESET value of the field corresponds to the
memory map as described in Section 3.4.1, “Memory
Map.”

Table 5-6. Aperture control field

Value Memory map properties

00 (RESET) | Normal operation memory map (Section 3.4.1):

« loads to 0..0xff always return 0 and cause no
PCl read (memory hole is enabled)

« PCl aperture(s) are enabled

01 « loads to address 0..0xff cause a PCl read, i.e.
the memory hole is disabled
« PCl aperture(s) are enabled

10 PCI apertures are disabled for loads
¢ loads return a 0 and cause no PClI read
11 RESERVED for future extensions
5.3.9 Non-cacheable Region

The data cache supports one non-cacheable address re-
gion within the DRAM address space aperture. The base
address of this region is determined by the value in the
DRAM_CACHEABLE_LIMIT MMIO register, which is
shown in Figure 5-6. Since uncached memory opera-
tions always incur many stall cycles, the non-cacheable
region should be used sparingly.

A memory operation is non-cacheable if its target ad-
dress satisfies:

[dram_cacheable_limit] <= address < [dram_limit]

Thus, the non-cacheable region is at the high end of the
DRAM aperture. The format of the
DRAM_CACHEABLE_LIMIT register forces the size of
the non-cacheable region to be a multiple of 64 KB.

When PNX1300 is reset, DRAM_CACHEABLE_LIMIT is
set equal to DRAM_LIMIT, which results in a zero-length
non-cacheable region.

Programmer’s note: When DRAM_CACHEABLE_LIMIT
is changed to enlarge the region that is non-cacheable,
software must ensure coherency. This is accomplished
by explicitly copying back dirty data (using dcb opera-
tions) and invalidating (using dinvalid operations) the
cache blocks in the previously unlocked region.

MMIO_BASE

offset: o

27 23 19
0x10 0008 DRAM_CACHEABLE_LIMIT[" DRAM_CACHEABLE_LIMIT_FIELD |

15 11 7 3 0
[o[ofo]o[o[o]o]o[o[o]o]o[o[o]0]o]

(riw)

Figure 5-6 Formats of the DRAM_CACHEABLE_LIMIT register.

PRELIMINARY SPECIFICATION 5-5

PNX1300/01/02/11 Data Book

Philips Semiconductors

5.3.10 Special Data Cache Operations

A program can exercise some control over the operation
of the data cache by executing special operations. The
special operations can cause the data cache to initiate
the copyback or invalidation of a block in the cache.
These operations are typically used by software to keep
the cache coherent with main memory.

In addition, there are special operations that allow a pro-
gram to read tag and status information from the data
cache.

Special data cache operations are always executed on
the memory port associated with issue slot 5.
5.3.10.1

The data cache controller recognizes a copyback and an
invalidate operation as shown in Table 5-7.

Copyback and invalidate operations

Table 5-7. Copyback and invalidate operations

Mnemonic Description

dcb(offset) rsrcl Data-cache copyback block. Causes
the block that contains the target
address to be copied back to main

memory if the block is valid and dirty.

Data-cache invalidate block. Causes
the block that contains the target
address to be invalidated. No copy-
back occurs even if the block is dirty.

dinvalid(offset) rsrcl

The dcb and dinvalid operations both compute a target
word address that is the sum of a register and seven-bit
offset. The offset can be in the range [-256..252] and
must be divisible by four.

dcb operation. The dcb operation computes the target
address, and if the block containing the address is found
in the data cache, its contents are written back to main
memory if the block is both valid and dirty. If the block is
not present, not valid, or not dirty, no action results from
the dcb operation. If the dcb causes a copyback to occur,
the CPU is stalled until the copyback completes. If the
block is not in cache, the operation causes no stall cy-
cles. If the block is in cache but not dirty, the operation
causes 4 stall cycles. If the block is dirty, the dcb opera-
tion causes a writeback and takes at least 19 stall cycles.

The dcb operation clears the dirty bit but leaves a valid
copy of the written-back block in the cache.

dinvalid operation. The dinvalid operation computes
the target address, and if the block containing the ad-
dress is found in the data cache, its valid and dirty bits

are cleared. No copyback operation will occur even if the
block is valid and dirty prior to executing the dinvalid op-
eration. The CPU is stalled for 2 cycles, if the target block
is in the cache; otherwise, no stall cycles occur.

A dinvalid or dcb operation updates the LRU information
to least recently used in its set.

Programmer’s note: Software should not execute din-
valid operations on locked blocks; otherwise, a ‘hole’ is
created thatcannot be reused until locking is deactivated.
5.3.10.2 Datacache tag and status
operations

The data cache controller recognizes two DSPCPU op-
erations for reading cache status as shown in Table 5-8.

The rdtag and rdstatus operations both compute a target
word address that is the sum of a register and scaled
seven-bit offset. The offset must be divisible by four and
in the range [-256..252].

Table 5-8. Cache read-status operations

Mnemonic Description

rdtag(offset) rsrcl Read data-cache tag. The target
address selects a data-cache block
directly; the operation returns a 32-bit
result containing the 21-bit cache tag

and the valid bit.

Read data-cache status. The target
address selects a data-cache set
directly; the operation returns a 32-bit
result containing the set’s eight dirty
bits and ten LRU bits.

rdstatus(offset) rsrcl

rdtag operation. The target address computed by rdtag
selects the data cache block by specifying the cache set
and set element directly. Address bits [10..6] specify the
cache set (one of 32), and bits [13..11] specify the setel-
ement (one of eight). All other target address bits are ig-
nored. This operation causes no CPU stall cycles.

The result of the rdtag operation is a full 32-bit word with
the format shown in Figure 5-7.

rdstatus operation. The target address computed by rd-
status selects the data cache set by specifying the set
number directly. Address bits [10..6] specify the cache
set (one of 32); all other target address bits are ignored.
This operation causes 1 CPU stall cycle.

The result of the rdstatus operation is a full 32-bit word
with the format shown in Figure 5-7. See Section 5.6.7,
“LRU Bit Definitions,” for a description of the LRU bits.

9 1
T T T

31 27 23 ;
rdtag Result Format ‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘ ‘

L_vaLDp

rdstatus Result Format ‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘

Figure 5-7. Result formats for rdtag and rdstatus operations.

5-6 PRELIMINARY SPECIFICATION

Philips Semiconductors

Cache Architecture

5.3.10.3

The data cache controller recognizes allocation opera-
tions as shown in Table 5-9. The allocation operations al-
locate a block and set the status of this block to valid. No
data is fetched from main memory. The allocated block
is undefined after this operation. The programmer has to
fill it with valid data by store operations. Allocation oper-
ations to apertures other than cacheable DRAM will be
discarded. Allocation of a non-dirty block causes 3 stall
cycles. Allocation of a dirty block will cause writeback of
this block to the SDRAM and take at least 11 stall cycles.

Data cache allocation operation

Table 5-9. Data cache allocation operations

Mnemonic Description

Data-cache allocate block with dis-
placement. Causes the block with
address (rsrcl+offset) &
(~(cache_block_size - 1)) to be allo-
cated and set valid.

allocd(offset) rsrcl

Data-cache allocate block with index.
Causes the block with address
(rsrcl+rsrc2) & (~(cache_block_size -
1)) to be allocated and set valid.

allocr rsrcl rsrc2

Data-cache allocate block with scaled
index. Causes the block with address
(rsrcl + 4 * rsrc2) &
(~(cache_block_size - 1)) to be allo-
cated and set valid.

allocx rsrcl rsrc2

5.3.10.4

The data cache controller recognizes prefetch opera-
tions as shown in Table 5-10. The prefetch operations
load a full cache block from memory concurrently with
other computation. If the prefetched block is already in
cache, no data is fetched from main memory. Prefetch
operations to other apertures than cacheable DRAM are
discarded. This operation is not guaranteed to execute,
it will not execute if the cache is already occupied with
two cache misses when the operation is issued. The
prefetch operations cause 3 stall cycles if there is no
copyback of a dirty block. If a dirty block is the target of
the prefetch, the dirty block will be written back to
SDRAM, and at least 11 stall cycles are taken.

Data cache prefetch operation

53.11

The PNX1300 memory system implements traditional or-
dering for memory operations that are issued in different
clock cycles. That is, the effects of a memory operation
issued in cycle j occur before the effects of a memory op-
eration issued in cycle j+1.

Memory Operation Ordering

For memory operations issued in the same cycle, howev-
er, it is not possible to execute memory operations in a
traditional order. So long as the simultaneous memory
operations access different addresses (aliasing is not
possible in PNX1300), no problems can occur. If two si-
multaneous operations do access the same address,
however, PNX1300 behavior is undefined. Specifically,
two cases are possible:

Table 5-10. Data cache prefetch operations

Mnemonic Description

prefd(offset) rsrc1 Data-cache prefetch block with dis-
placement. Causes the block with
address (rsrcl+offset) &
(~(cache_block_size - 1)) to be

prefetched

prefr rsrcl rsrc2 Data-cache prefetch block with index.
Causes the block with address
(rsrcl+rsrc2) & (~(cache_block_size -

1)) to be prefetched.

prefl6x rsrcl rsrc2 Data-cache prefetch block with scaled
16-bit index. Causes the block with
address (rsrcl + 2 *rsrc2) &
(~(cache_block_size - 1)) to be

prefetched.

pref32x rsrcl rsrc2 Data-cache prefetch block with scaled
32-bit index. Causes the block with
address (rsrcl + 4 *rsrc2) &

(~(cache_block_size - 1)) to be

prefetched.

1. When multiple values are written to the same address
in the same cycle, the resulting value in memory is un-
defined.

2. When a read and a write occur to the same address
in the same clock cycle, the value returned by the
read is undefined.

The behavior of simultaneous accesses to the same ad-
dress is undefined regardless of whether one or both
memory operations hit in the cache.

Hidden Memory System Concurrency. Some cache
operations may be overlapped with CPU execution. In
general, a program cannot determine in what order
cache misses will complete nor can a program determine
when and in what order copyback operations will com-
plete. A program can, however, enforce the completion
of copyback transactions to main memory because copy-
back and invalidate operations can complete only if
pending copyback transactions for the same block have
completed. Thus, a program can synchronize to the com-
pletion of a copyback operation by dirtying a block, issu-
ing a copyback operation for the block, and then issuing
an invalidate operation for the block.

Ordering Of Special Memory Operations. The follow-
ing are special memory operations:

1. Loads or stores to MMIO addresses.

2. Non-cached loads or stores.

3. Any copyback or invalidate operation.

4. Loads or stores that cause a PClI-bus access.

The CPU is stalled until these special memory opera-
tions are completed; there is no overlap of CPU execu-
tion with these special memory operations. Thus, a pro-
grammer can assume that traditional memory operation
ordering applies to special memory operations. Note,
however, that ordering is undefined for two special mem-
ory operations issued in the same cycle.

PRELIMINARY SPECIFICATION 5-7

PNX1300/01/02/11 Data Book Philips Semiconductors

5.3.12 Operation Latency Table 5-11. Instruction cache characteristics
Load and store operations have_ an operation latency of Characteristic PNX1300 Implementation
three cycles, regardless of the size of the data transfer.
Cache size 32 KB
5.3.13 MMIO Register References Cache associativity | 8-way set-associative
Memory operations that reference MMIO registers are B'Ofk Sjize 64 bytes' :
not cached, and the CPU is stalled until the MMIO refer- Valid bits One valid bit per 64-byte block
ence completes. A MMIO register reference occurs when Replacement policy | Hierarchical LRU (least-recently used)
an address is in the range: among the eight blocks in a set

[MMIO_BASE] < address < ([MMIO_BASE] + 0x200000) Operation latency Branch delay is three cycles
The size of the MMIO aperture is hardwired at 2 MB. Coherency enforce- | Software uses a special operation to

ment enforce cache coherency
Cache locking Up to 1/2 (four out of eight blocks of
5.3.14 PCIBus References each set) of the cache contents can be

Any CPU memory operation that references an address locked; granularity is 64 bytes

outside the SDRAM and MMIO address apertures is as-
sumed to reference a device or memory on the PCI bus. 54.1 General Cache Parameters
PCI-bus data transfers are not cached, and the CPU is The PNX1300 instruction cache is 32 KB in size with a

tall ntil the PCI transfer completes.) .
stalled until the PCI transfer completes 64-byte block size. Thus, the cache contains 512 blocks
each with its own address tag. The cache is 8-way set-
associative, so there are 64 sets, each containing 8 tags.

5.3.15 CPU Stall Conditions

The data cache causes the CPU to stall when: A single valid bit is associated with a block, so each block

. and associated address tag is either entirely valid or in-

1. Any cache miss occurs. valid; on a cache miss, 64 bytes are read from SDRAM
2. Two simultaneously issued, cacheable memory oper- to make the entire block valid.

ations need to access the same cache bank (bank

conflict). The geometry o_f the instruction cachg isavailable to soft-

. ware by reading the MMIO register IC_PARAMS.

3. An access that references an address in the MMIO Figure 5-8 shows the format of the IC_PARAMS register;
aperture is issued. Table 5-12 lists its field values.

4. An access to the PCl bus is issued. . s
. .) L The product of the block size, associativity, and number
5 A ngn-tnwal copyback or invalidate operation is is- of sets gives the total cache size (32 KB in this case).
sued.
6. An access to the non-cacheable region in the DRAM Table 5-12. IC PARAMS field values
aperture is issued. -

. X Field Name Value
5.3.16 Data Cache Initialization
BLOCKSIZE 64
When PNX1300 is reset, the data cache executes an ini- ASSOCIATIVITY 8
tialization sequence. The cache asserts the CPU stall NUMBER OF SETS o4
signal while it sequentially resets all valid and dirty bits. — =
The cache de-asserts the stall signal after completing the)
initialization sequence. 5.4.2 Address Mapping
PNX1300 instruction addresses are mapped onto the
54 INSTRUCTION CACHE data cache storage structure as shown in Figure 5-9. An
. .) instruction address is partitioned into three fields as de-
The instruction cache stores compressed CPU instruc- scribed in Table 5-13

tions; instructions are decompressed before being deliv-
ered to the CPU. The following sections describe the in-
struction cache and its operation; Table 5-11
summarizes instruction-cache characteristics.

MMIO_BASE
Offset 31\ \27\ T \23\ T T \19\ 15\ T T \11 T T 7 T T T T 3 T T T 0
0x10 0020 IC_PARAMS (r/o) \ | BLOCKSIZE ASSOCIATIVITY] NUMBER_OF_SETS

Figure 5-8. Format of the instruction-cache parameters register.

5-8 PRELIMINARY SPECIFICATION

Philips Semiconductors

Cache Architecture

Table 5-13. Instruction Address Field Partitioning

) Address
Field Bits Purpose
Offset 5..0 Byte offset into a set
Set 11..6 Selects one of the sets in the cache (one
of 64 in the case of PNX1300)
Tag 31..12 | Compared against address tags of set
members
5.4.3 Miss Processing Order

When a miss occurs, the instruction cache starts filling
the requested block from the beginning of the block. The
DSPCPU is stalled until the entire block is fetched and
stored in the cache.

54.4

The hierarchical LRU replacement policy implemented
by the instruction cache is identical to that implemented
by the data cache. See Section 5.3.4, “Replacement Pol-
icies, Coherency,” for a description of the hierarchical
LRU algorithm.

Replacement Policy

5.4.5

All program code must first be loaded into SDRAM. The
instruction cache cannot fetch instructions from other
memories or devices. In particular, the cache cannot
fetch code from on-chip devices or over the PCI bus.

Location of Program Code

5.4.6

The instruction cache is closely coupled to three branch
units. Each unit can accept a branch independently, so
three branches can be processed simultaneously in the
same cycle.

Branch Units

Branches in PNX1300 are called ‘delayed branches’ be-
cause the effect of a successful (taken) branch is not
seen in the flow of control until some number of cycles af-
ter the successful branch is executed. The number of cy-
cles of latency is called the branch delay. On PNX1300,
the branch delay is three cycles.

Although three branches can be executed simultaneous-
ly, correct operation of the DSPCPU requires that only
one branch be successful (taken) in any one cycle.
DSPCPU operation is undefined if more than one con-
current branch operation is successful.

Each branch unit takes four inputs from the DSPCPU:
the branch opcode, a guard bit, a branch condition, and
a branch target address. A branch is deemed successful
if and only if the opcode is a branch opcode, the guard bit
is TRUE (i.e., = 1), and the condition (determined by the
opcode) is satisfied.

54.7

A program can exercise some control over the operation
of the instruction cache by executing the special iclr op-
eration. This operation causes the instruction cache to
clear the valid bits for all blocks in the cache, including
locked blocks. The LRU replacement status of all blocks
is reset to its initial value. The CPU is stalled while iclr is
executing.

Coherency: Special iclr Operation

See Section 5.6, “Cache Coherency,” for further discus-
sion of coherency issues.

5.4.8

The instruction cache supports read access to its tag and
status bits, but not through special operations as with the
data cache. Since the instruction cache and branch units
can execute only resultless operations, access to the in-
struction-cache tags and status bits is implemented us-
ing normal load operations executed by the DSPCPU
that reference a special region in the MMIO address ap-
erture. The region is 64 KB long and starts at
MMIO_BASE. Instruction cache tags and status bits are
read-only; store operations to this region have no effect.
MMIO operations to this special region are only allowed
by the DSPCPU, not by any other masters of the on-chip
data highway, such as external PCl initiators.

Reading Tags and Cache Status

Programmer’s note: Tag and status information cannot
be read by PCI access, but only by DSPCPU access.
Tag and status read cannot be scheduled in the same cy-
cle with or one cycle after an iclr operation.

Reading A Tag And Valid Bit. To read the tag and valid
bit for a block in the instruction cache, a program can ex-
ecute a |d32 operation directed at the instruction-cache
region in the MMIO aperture. The top of Figure 5-10
shows the required format for the target address. The
most-significant 16 bits must be equal to MMIO_BASE,
the least-significant 15 bits select the block (by naming
the set and set member), and bit 15 must be set to zero
to perform a tag read. Note that in PNX1300, valid set
numbers range from 0 to 63. Space to encode set num-
bers 64 to 511 is provided for future extensions.

A 1d32 with an address as specified above returns a 32-
bit result with the format shown at the top of Figure 5-11.
Bit 20 contains the state of the valid bit, and the least-sig-
nificant 20 bits contain the tag for the block addressed by
the 1d32.

Reading The LRU Bits. To read the LRU bits for a set in
the instruction cache, a program can execute a 1d32 op-
eration as above but using the address format shown at
the bottom of Figure 5-10. In this format, bit 15 is set to
one to perform the read of the LRU bits, and the
tag_i_mux field is set to zeros because it is not needed.

. 31
Instruction Cache‘ T .

Address Tag

Figure 5-9. Instruction-cache address partitioning.

PRELIMINARY SPECIFICATION 5-9

PNX1300/01/02/11 Data Book

Philips Semiconductors

Reading the LRU bits produces a 32-bit result with the
format shown at the bottom of Figure 5-11. The least-sig-
nificant ten bits contain the state of the LRU bits when the
1d32 was executed. See Section 5.6.7, “LRU Bit Defini-
tions,” for a description of the LRU bits.

Note that the tag_i_mux and set fields in the address for-
mats of Figure 5-10 are larger than necessary for the in-
struction cache in PNX1300. These fields will allow fu-
ture implementations with larger instruction caches to
use a compatible mechanism for reading instruction
cache information. The tag_i_mux field can accommo-
date a cache of up to 16-way set-associativity, and the
set field can accommodate a cache with up to 512 sets.

For PNX1300, the following constraints of the values of
these fields must be observed:

1. 0<tag_i_mux<7
2. 0<set<63

5.4.9

Like the data cache, the instruction cache allows up to
one-half of its blocks to be locked. A locked block is nev-
er chosen as a victim by the replacement algorithm; its
contents remain undisturbed until the locked status is
changed explicitly by software. Thus, on PNX1300, up to
16 KB of the cache can be used as a high-speed instruc-
tion ‘ROM.’ Only four out of eight blocks in any set can be
locked.

The MMIO registers IC_LOCK_ADDR, IC_LOCK_SIZE,
and IC_LOCK_CTL—shown in Figure 5-12—are used to
define and enable instruction locking in the same way
that the similarly named data-cache locking registers are
used. Section 5.3.7, “Cache Locking,” describes the de-
tails of cache locking; they are not repeated here.

Cache Locking

Setting the IC_LOCK_ENABLE bit (in IC_LOCK_CTL) to
‘1’ causes the following sequence of events:

1. The instruction cache invalidates all blocks in the
cache.

2. The instruction cache fetches all blocks in the lock
range (defined by IC_LOCK_ADDR and
IC_LOCK_SIZE) from main memory into the cache.

3. Cache locking is activated so that the locked blocks
cannot be victims of the replacement algorithm.

The only difference between this sequence and the ini-
tialization sequence for data-cache locking is that dirty
blocks (which cannot exist in the instruction cache) are
not written back first.

Programmer’s note: Programmers (or compilers) must
combine all instructions that need to be locked into the
single linear instruction-locking address range.

The special iclr operation also removes locked blocks
from the cache. If blocks are locked in the instruction
cache, then instruction cache locking should be disabled
in software (by writing ‘0’ to IC_LOCK_CTL) before an
iclr operation is issued.

Locking should not be enabled by PCI accesses to the
MMIO register.

Instruction Cache Initialization and
Boot Sequence

5.4.10

When PNX1300 is reset, the instruction cache executes
an initialization and processor boot sequence. While re-
set is asserted, the instruction cache forces NOP opera-
tion to the DSPCPU, and the program counter is set to
the default value reset_vector. When reset is deassert-
ed, the initialization and boot sequence is as follows.

.) 31\ \27 T \23\ T 19\ 15 L \11 T T \3\ 0

To Read Tag & Valid Bit ‘ MMIO_BASE ‘ 0 ‘TAG_I_MUX‘ SET ‘ 0 ‘ 0 ‘

To Read LRU Bis | MMI0. BASE [1]olo]o]0] et [o]o]

Figure 5-10. Required address format for reading instruction-cache tags and status.
31 27 23 19‘ ‘15‘ ‘11‘ , , ‘7‘ ‘3‘ ‘0
I-CacheTag-ReadResuItFormat‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘ ‘ TAG ‘
L—vaLD

I-CacheStatus-ReadResuItFormat‘0‘ "tRU’ ‘

Figure 5-11. Result formats for reads from the instruction-cache region of the MMIO aperture.

MMIO_BASE
offset:

31 27 23 19 15 11 7 ‘3‘ ; 0
0x10 0210 IC_LOCK_CTL (riw) \o\ reserved‘ \

IC_LOCK_ENABLE —

0x10 0214 IC_LOCK_ADDR (r/w) |

T T T T T T T
IC_LOCK_ADDRESS

[ofofo]o[o[ofo[o[o[o]o]o[o]o]o]

0x10 0218 IC_LOCK_SIZE (riw) [o0]o]o]o]o]o]o]o]o]o]0]o]o]o]o]o]o]o]

& tod 57 [olo]o]o]o[b]

Figure 5-12. Formats of the registers that control instruction-cache locking.

5-10 PRELIMINARY SPECIFICATION

Philips Semiconductors

Cache Architecture

1. The stall signal is asserted to prevent activity in the
DSPCPU and data cache.

2. The valid bits for all blocks in the instruction cache are
reset.

3. Atthe completion of the block invalidation scan, the
stall signal to the DSPCPU and data cache are deas-
serted.

4. The DSPCPU begins normal operation with an in-
struction fetch from the address reset_vector.

The initialization process takes 512 clock cycles. Reset
sets reset_vector equal to DRAM_BASE so that program
execution starts at the initial value of DRAM_BASE. The
initial value of DRAM_BASE is determined as described
in Section 5.2, “DRAM Aperture.”

55 LRUALGORITHM

When a cache miss occurs, the block containing the re-
guested data must be brought into the cache to replace
an existing cache block. The LRU algorithm is responsi-
ble for selecting the replacement victim by selecting the
least-recently-used block.

The 8-way set-associative caches implement a hierarchi-
cal LRU replacement algorithm as follows. Eight sets are
partitioned into four groups of two elements each. To se-
lect the LRU element:

« First, the LRU pair is selected out of the four pairs
using a four-way LRU algorithm.

* Second, the LRU element of the pair is selected
using a two-way LRU algorithm.

551

The two-way LRU requires an administration of one bit
per pair of elements. On every cache hit to one of the two
blocks, the cache writes once to this bit (just a write, not
a read-modify-write). If the even-numbered block is ac-
cessed, the LRU bit is set to ‘1’; if the odd-numbered
block is accessed, the LRU bitis setto ‘0’. On a miss, the
cache replaces the LRU element, i.e. if the LRU bit is ‘0",
the even numbered element will be replaced,; if the LRU
bit is ‘1’, the odd numbered element will be replaced.

Two-Way Algorithm

56 CACHE COHERENCY

The PNX1300 hardware does not implement coherency
between the caches and main memory. Generalized co-
herency is the responsibility of software, which can use
the special operations dcb, dinvalid, and iclr to enforce
cache/memory synchronization.

56.1 Example 1: Data-Cache/lnput-Unit
Coherency

Before the CPU commands the video-in unit to capture a
video frame, the CPU must be sure that the data cache
contains no blocks that are in the address region that the
video-in unit will use to store the input frame. If the video-
in unit performs its input function to an address region

and the data cache does hold one or more blocks from
that region, any of the following may happen:

¢ A miss in the data cache may cause a dirty block to
be copied back to the address region being used by
the video-in unit. If the video-in unit already stored
data in the block, the write-back will corrupt the frame
data.

¢ The CPU will read stale data from the cache instead
of from the block in main memory. Even though the
video-in unit stored new video data in the block in
main memory, the cache contents will be used
instead because it is still valid in the cache.

To prevent erroneous copybacks or the use of stale data,
the CPU must use dinvalid operations to invalidate all
blocks in the address region that will be used by the VI
unit.
5.6.2 Example 2: Data-Cache/Output-Unit
Coherency

Before the CPU commands the video-out unit to send a
frame of video, the CPU must be sure that all the data for
the frame has been written from the data cache to the re-
gion of main memory that the video-out unit will output.
Explicit action is necessary because the data cache—
with its copyback write policy—will hold an exclusive
copy of the data until it is either replaced by the LRU al-
gorithm or the CPU explicitly forces it to be copied back
to main memory.

Before an output command is issued to the video-out
unit, the CPU must execute dcb operations to force co-
herency between cache contents and main memory.
5.6.3 Example 3: Instruction-Cache/Data-
Cache Coherency

If code prepared by a program running on the CPU must
be subsequently executed, coherency between the in-
struction and data caches must be enforced. This is ac-
complished by a two-step process:

1. Coherency between the data cache and main memo-
ry must be enforced since the instruction cache can
fetch instructions only from main memory.

2. Coherency between the instruction cache and main
memory is enforced by executing an iclr operation.

The CPU will now be able to fetch and execute the new
instructions.

5.6.4 Example 4: Instruction-Cache/Input-
Unit Coherency

When an input unit is used to load program code into
main memory, the iclr operation must be issued before
attempting to execute the new code.

5.6.5

For administration of the four-way algorithm, the cache
maintains an upper-left triangular matrix ‘R’ of 1-bit ele-
ments without the diagonal. R contains six bits (in gener-

Four-Way Algorithm

PRELIMINARY SPECIFICATION 5-11

PNX1300/01/02/11 Data Book

Philips Semiconductors

LRU bit9 LRU bit 8 LRU bit 7 LRU bit 6 LRU bit 5

LRU bit 4 LRU bit 3 LRU bit 2 LRU bit 1 LRU bit 0

‘ 2_way[3]

2 wayl2] | 2waylt] | 2waylo] | RLO] | R[]

R20] | Ri32 | RBA | RBO

Figure 5-13. LRU bit definitions; 2_way[k] is the two-way LRU bit of pair k = (j div 2) for set element j.

MMIO_BASE
offset:

0x10 000C MEM_EVENTS (r/w)

31 27 23 19 15 11 7‘ ; ; 3‘ ; ;
[o]o]o]o]o[o]o[o]o]o]o]o]o]o]o]o]o]o]o[o]ofo]0]o] Eventz | Eventi |

Figure 5-14. Format of the memory_events MMIO register.

al, nx(n-1)/2 bits for n-way LRU). If set element k is ref-
erenced, the cache sets row k to ‘1’ and column k to ‘0’

RIK, 0..n-1] « 1,
R[0..n-1, k] < 0

The LRU element is the one for which the entire row is ‘0’
(or empty) and the entire column is ‘1’ (or empty):

R[k, 0..n-1] = 0 and R[0..n-1,k] = 1

For a 4-way set-associative cache, this algorithm re-
quires six bits per set of four cache blocks. On every
cache hit, the LRU info is updated by setting three of the
six bits to ‘0’ or ‘1’, depending on the set element that
was accessed. The bits need only be written, no read-
modify-write is necessary. On a miss, the cache reads
the six LRU bits to determine the replacement block.

PNX1300 combines the two-way and four-way algo-
rithms into an 8-way hierarchical LRU algorithm. A total
of ten administration bits are required: six to maintain the
four-way LRU plus four bits maintain the four two-way
LRUs.

The hierarchical algorithm has performance close to full
eight-way LRU, but it requires far fewer bits—ten instead
of 28 bits—and is much simpler to implement.

To update the LRU bits on a cache hit to element j (with
0 <= j <=7), the cache applies m = (j div 2) to the four-
way LRU administration and (j mod 2) is applied to the
two-way administration of pair m. To select a replace-
ment victim, the cache first determines the pair p from
the four-way LRU and then retrieves the LRU bit q of pair
p. The overall LRU element is the px2+q.

5.6.6

Reset causes the LRU administration bits to initialized to
a legal state:

R[1,0] « R[2,0] « R[3,0] « 1

R[2,1] « R[3,1] <+ R[3,2] < 0O

2_way[3] « 2_way[2] « 2_way[1] « 2_way[0] « O

LRU Initialization

5.6.7 LRU Bit Definitions

The ten LRU bits per set are mapped as shown in
Figure 5-13. This is the format of the LRU field as re-
turned by the special operation rdstatus for the data
cache and a 1d32 from MMIO space (see Section 5.4.8,
“Reading Tags and Cache Status”) for the instruction
cache.

5.6.8 LRU for the Dual-Ported Cache

For the PNX1300 dual-ported data cache, two memory
operations to the same set are possible in a single clock
cycle. To support this concurrency, two updates of the
LRU bits of a single set must be possible.

The following rules are used by PNX1300:

1. LRU bits that are changed by exactly one portreceive
the value according to the algorithm described above.

2. LRU bits that are changed by both ports receive a val-
ue as if the algorithm were first applied for the access
in port zero and then for the access in port one.

5.7 PERFORMANCE EVALUATION
SUPPORT

The caches implement support for performance evalua-
tion. Several events that occur in the caches can be
counted using the PNX1300 timer/counters, by selecting
the source CACHE1 and/or CACHE2, as described in
Section 3.8, “Timers.” Two different events can be
tracked simultaneously by using 2 timers.

The MMIO register MEM_EVENTS determines which
events are counted. See Figure 5-14 for the format of
MEM_EVENTS. Table 5-14 lists the events that can be
tracked and the corresponding values for the
MEM_EVENTS fields. Eventl selects the actual source

PRELIMINARY SPECIFICATION

Philips Semiconductors

Cache Architecture

for the TIMER CACHE1l source. Event2 selects the

source for TIMER CACHE?2.
Table 5-14. Trackable cache-performance events

after the read of the missing line is done and thus
does not add extra stall cycles.

Prefetch delay is the same as read data cache if
memory bus is available. As a reminder the prefetch
may be discarded if the data cache state machine is
“full”, and there is a 3 stall cycle penalty when the
prefetch is issued.

58 MMIO REGISTER SUMMARY

Table 5-15 lists the MMIO registers that pertain to the op-
eration of PNX1300's instruction and data caches.

Table 5-15. MMIO register summary

Name Description
DRAM_BASE Sets location of the DRAM aperture
DRAM_LIMIT Sets size of the DRAM aperture

DRAM_CACHEABLE
_LIMIT

Divides DRAM aperture into cache-
able and non-cacheable portions

MEM_EVENTS Selects which two events will be
counted by timer/counters
DC_LOCK_CTL Data-cache locking enable and aper-

ture control

DC_LOCK_ADDR

Sets low address of the data-cache
address lock aperture

Encoding Event

0 No event counted

1 Instruction-cache misses

2 Instruction-cache stall cycles (including data-
cache stall cycles if both instruction-cache and
data-cache are stalled simultaneously)

3 Data-cache bank conflicts

4 Data-cache read misses

5 Data-cache write misses

6 Data-cache stall cycles (that are not also instruc-
tion-cache stall cycles)

7 Data-cache copyback to SDRAM

8 Copyback buffer full

9 Data-cache write miss with all fetch units occu-
pied

10 Data cache stream miss

11 Prefetch operation started and not discarded

12 Prefetch operation discarded (because it hits in
the cache or there is no fetch unit available)

13 Prefetch operation discarded (because it hits in
the cache)

14-15 Reserved

If the memory bus is available:

On read data cache miss the minimum waiting time is
12 SDRAM clock cycles, if critical word first is
granted by the Main Memory Interface (MMI). If not,
then data cache waits from 12 to 18 SDRAM cycles
(16 SDRAM cycles are required to fetch 64 bytes
from SDRAM.

On write data cache miss, the missing line needs to
be fetched, thus it implies the same SDRAM cycles
as a read data cache miss. If the victimized cache
line is dirty, the cache line is copied back to memory

DC_LOCK_SIZE

Sets size of the data-cache address
lock aperture

DC_PARAMS Read-only register with data-cache
parameter information

IC_PARAMS Read-only register with instruction-
cache parameter information

IC_LOCK_CTL Instruction-cache locking enable

IC_LOCK_ADDR

Sets low address of the instruction-
cache address lock aperture

IC_LOCK_SIZE Sets size of the instruction-cache
address lock aperture
MMIO_BASE Sets location of the MMIO aperture

PRELIMINARY SPECIFICATION

5-13

PNX1300/01/02/11 Data Book Philips Semiconductors

5-14 PRELIMINARY SPECIFICATION

Video In

Chapter 6

6.1 VIDEO IN OVERVIEW

n this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The Video In (VI) unit provides the following functions:

« Digital video input from a digital camera or analog
camera (using a video decoder).

« High-bandwidth (81 MB/sec) raw input data channel.

« Direct 8-10 bit interface for video A/D converters at
up to 81-MHz sample rate.

* Receiver port for PNX1300-to-PNX1300 unidirec-
tional message passing

The VI unit operates in one of the modes per Table 6-1.

Table 6-1. VI unit mode selection.

Mode Function Explanation

0000 | fullres capture YUV 4:2:2 capture, no decimation

0001 | halfres capture YUV 4:2:2 capture, decimate by 2

0010 | raw8 capture raw 8-bit data capture, pack 4

bytes to a word

0011 | rawl0s capture raw 10-bit data capture, sign

extend to 16 bits, pack 2 to a word

0100 | raw10u capture raw 10-bit data capture, zero-

extend to 16 bits, pack 2 to a word

0101 | message passing | message reception from EVO

0110 | Reserved

1111

Digital video input is in YUV 4:2:2 with 8-bit resolution
multiplexed in CCIR656 format® from a digital camera or
CCIR656-capable video decoder (such as the Philips
SAAT7111 or SAA7113), across an 8-bit-wide interface.
Resolutions up to CCIR601 are accepted at 50 or 60
fields per second. A programmable rectangular image is
captured from a video frame and written in planar format
to PNX1300 SDRAM. The video camera or decoder can
be programmed using the PNX1300 I12C bus. In fullres
capture mode, luminance (Y) and chrominance (U, V)
pass unmodified. In halfres capture mode, luminance

1. Refer to CCIR recommendation 656: interfaces for dig-
ital component video signals in 525-line and 625-line
television systems. Recommendation 656 is included in
the Philips Desktop Video Data Handbook.

by Gert Slavenburg

and chrominance are horizontally decimated by a factor
of two to convert to CIF-like resolution with YUV 4:2:2 or
MPEG sampling rules. If vertical subsampling on chromi-
nance is desired, it can be performed by software on the
DSPCPU or by the on-chipimage coprocessor (ICP).

When operating as raw input data channel, VI accepts 8-
bit-wide data. The operation mode is raw8 capture. No
data selection or data interpretation is done. Data is writ-
ten in packed form, four bytes to a word, to local SDRAM.
There is no hardware control over the rate at which the
source sends data. Instead, VI maintains two pointer/
counter registers to ensure that no data is lost when the
local SDRAM memory buffer fills. Data is accepted at the
clock of the sender. If desired, VI_CLK can be pro-
grammed as an output to drive the data transfer at a pro-
grammable rate.

VI can accept raw data from up to 10-bit A/D converters,
at sampling rates up to 81 MHz. VI can operate in raw8,
raw1O0u, or raw10s capture mode for eight-bit, unsigned
10-bit or signed 10-bit data. In the 10-bit modes, data is
zero- or sign-extended to 16 bits and stored in packed
form in local SDRAM. As with the raw8-capture mode, VI
maintains two pointer/counter registers to ensure that no
data is lost when the local SDRAM memory buffer fills.
Data is accepted at the externally set sampling rate. If
desired, VI_CLK can be programmed as an output to
serve as a programmable sampling clock.

VI can act as receiver from the Enhanced Video Out
(EVO) unit of another PNX1300. One EVO unit can
broadcast to multiple receiving Vis. In this message
passing mode, no data selection or data interpretation is
done. Each message of the sender is written as byte-
packed data to a separate local SDRAM memory buffer.
Message start and end is indicated by the sender. The
receiving VI will accept data until the sender indicates
message end or until the current memory buffer is full. If
the memory buffer fills before message end is encoun-
tered, the received data is truncated and an error condi-
tion is raised.

6.1.1

Besides the VI-specific pins in Table 6-2, the PNX1300
I2C interface is typically used to control the external cam-
era or video decoder.

Interface

Figure 6-1 through Figure 6-4 illustrate typical connec-
tions for commonly used external sources. Note that
VI_DVALID is only used in special circumstances, e.g.
when sending data through a channel that results in
clock periods both with and without data transfers.

PRELIMINARY SPECIFICATION 6-1

PNX1300/01/02/11 Data Book

Philips Semiconductors

Table 6-2. VI unit interface pins

VI_CLK 1/0-5 | » If configured as input (power up
default): a positive transition on this
incoming video clock pin samples
all other VI_DATA input signals
below if VI_DVALID is HIGH. If
VI_DVALID is LOW, VI_DATA is
ignored. Clock and data rates of up
to 81 MHz are supported. PNX1300
supports an additional mode where
VI_DATA[9:8] in message passing
mode are not affected by the
VI_DVALID signal, Section 6.6.1.

« If configured as output: programma-
ble output clock to drive an external
video A/D converter. Can be pro-
grammed to emit integral dividers of
DSPCPU_CLK.

« See Section 6.2 for clock program-
ming details.

VI_DVALID IN-5 | VI_DVALID indicates that valid data is
present on the VI_DATA lines. If HIGH,
VI_DATA will be accepted on the next
VI_CLK positive edge. If LOW, no
VI_DATA will be sampled. PNX1300
supports an additional mode where
VI_DATA[9:8] in message passing
mode are not affected by the
VI_DVALID signal, Section 6.6.1.

VI_DATA[7:0]

N-5 | CCIR656 style YUV 4:2:2 data from a
digital camera, or general purpose
high speed data input pins. Sampled
on positive transitions of VI_CLK if
VI_DVALID HIGH.

VI_DATA[9:8] | IN-5 | Extension high speed data input bits to
allow use of 10-bit video A/D convert-
ers in raw10 modes. VI_DATA[8]
serves as START and VI_DATA[9] as
END message input in message pass-
ing mode. Sampled on positive transi-
tions of VI_CLK if VI_DVALID HIGH.
PNX1300 supports an additional mode
where VI_DATA[9:8] in message pass-
ing mode are not affected by the
VI_DVALID signal, Section 6.6.1.

6.1.2

The VI logic can be set to operate in diagnostic mode,
which connects the inputs of VI to the outputs ofthe EVO

Diagnostic Mode

unit. This mode provides boot diagnostics with the ability
to verify major operational aspects of the chip before
handing control to an operating system.

Diagnostic mode is entered by writing a control word with
a ‘l’in the DIAGMODE bit position to the VI_CTL register
(see Figure 6-11). The EVO unit has to be setup to pro-
vide a clock before starting DIAGMODE. After a VI soft-
ware reset, the DIAGMODE bit has to be set back to ‘1".
In diagnostic mode, the VI signals are exactly as shown
in Figure 6-2, except that the inputs come from the on-
chip EVO unit. Note that the inputs are truly taken from
the PNX1300 EVO external pins, i.e. if an external (board
level) source is driving EVO pins, diagnostic mode is not
capable of testing the EVO unit.

Note that the diagnostic mode only controls an input mul-
tiplexer. VI can be programmed and operated in all usual
modes. The raw modes are particularly attractive for di-
agnostics purposes, since they allow VI to operate al-
most as an on-chip logic analyzer.

6.1.3

The VI unit enters power down state whenever PNX1300
is put in global power down mode, except if the SLEEP-
LESS bit in VI_CTL is set. In the latter case, the block
continues DMA operation and will wake up the DSPCPU
whenever an interrupt is generated.

Power Down and Sleepless

The EVO block can be separately powered down by set-
ting a bit in the BLOCK_POWER_DOWN register. Refer
to Chapter 21, “Power Management.”

It is recommended that the EVO unit be stopped (by ne-
gating VI_CTL.CAPTURE_ENABLE) before block-level
power down is started, or that SLEEPLESS mode be
used when global power down is activated.

6.1.4

Video In is reset by a PNX1300 hardware reset (pin
TRI_RESET#) or by a VI software reset. The latter is ac-
complished by writing a control word of 0x00080000 to
the VI_CTL register. After a software reset, allow for 5
video clock cycles delay before enabling VI capture.
Upon hardware or software reset, the VI_CTL,
VI_STATUS, and VI_CLOCK registers are set to all '0’s.
The state of the other